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In this paper, we have studied the anisotropic and homogeneous Kantowski-Sachs cosmological model filled with two 
minimally interacting fields - matter and holographic dark energy components in the frame work of Brans-Dicke (1961) 
scalar tensor theory of gravitation. To obtain a deterministic solution of the model we consider two conditions (i) shear 
scalar is proportional to expansion scalar (ii) scalar field is a function of average scale factor. Some important physical and 
geometrical properties are also discussed. 
 
 
 

1.     Introduction 

Recent astrophysical data from distant Ia 
supernovae observations [2,3] show that the current 
Universe is not only expanding, but also it is 
accelerating due to some kind of negative-pressure 
form of matter known as dark energy [4,5]. The 
simplest candidate for dark energy is the 
cosmological constant [6], conventionally 
associated with the energy of the vacuum with 
constant energy density and pressure, and an 
equation of state 1ω = − . The present observational 
data favor an equation of state for the dark energy 
with parameter very close to that of the 
cosmological constant. The next simple model 
proposed for dark energy is the quintessence [7-9], 
a dynamical scalar field, which slowly rolls down 
in a flat enough potential. The equation of state for 
a spatially homogeneous quintessence scalar field 
satisfies 1ω = −  and therefore can produce 
accelerated expansion. This field is taken to be 
extremely light which is compatible with its 
homogeneity and avoids the problem with the 
initial conditions. 

Recent studies of black holes and string theories 
may provide a new alternative to the solution of the 
dark energy problem, known as the holographic 
principle [10-13]. Another way to study dark 
energy arises from holographic principle that states 
that the number of degrees of freedom related 
directly to entropy scales with the enclosing area of 
the system. In that case, the total energy of the  
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system with size L should not exceed the mass of 

the same black hole size. It means 3 2
pL LMρΛ = , 

where ρΛ  is the quantum zero-point energy density 

that comes from UV cutoff Λ, and pM  denotes the 

Planck mass. The largest L is required to saturate 

this inequality. Then, its holographic energy 
density is given by the following expression 
 

2 2

2

3 pc M

L
ρΛ =                              (1) 

 
Where, c is free dimensionless parameter, which is 
commonly considered as a constant, but there is a 
possibility to consider non-constant c [14,15]. 
Based on cosmological state of the holographic 
principle, the holographic model of dark energy has 
been proposed and studied widely in the literature 
[16-24]. Recently, Adhav et al. [25] have discussed 
interacting dark matter and holographic dark 
energy in Bianchi type-V universe. 

The Brans and Dicke [1] theory of gravitation is 
the well-known modified version of Einstein’s 
theory. It is a scalar tensor theory in which the 
gravitational interaction is mediated by a scalar 
field as well as the tensor field gij of Einstein’s 
theory. In this theory the scalar field has the 
dimension of the inverse of the gravitational 
constant. 
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and  
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Also, we have energy conservation equation as 
 

0; =j
ijT                              (4) 

 
Where, Tij is the stress energy tensor of the matter, 
ω  is the dimensionless coupling constant and 
comma and semi-colon denote partial and covariant 
differentiation, respectively. 

Several aspects of Brans-Dicke cosmology have 
been extensively investigated by many authors. 
Reddy [26], Adhav et al. [27], Rao and Vijaya 
Santhi [28-30], Naidu et al. [31] are some of the 
authors who have investigated several aspects of 
this theory. Pawar and Solanke [32] have discussed 
exact Kantowski-Sachs anisotropic dark energy 
cosmological models in the Brans-Dicke theory of 
gravitation. Recently, Kiran et al. [33] have studied 
holographic dark energy model in this theory. 

Inspired by the above investigations and 
discussions, in this paper we study the Kantowski-
Sachs holographic dark energy cosmological model 
in Brans-Dicke scalar tensor theory of gravitation. 
The paper is organized as follows. In Sec. 2, we 
discuss metric, energy momentum tensor and field 
equations. In Sec. 3, we have obtained solution of 
the field equations. Sec. 4 contains some important 
properties of the model. The last section devoted to 
conclusions of the obtained model. 

2.     Metric and Field Equations 

We consider the spatially homogenous and 
anisotropic Kantowski–Sachs space-time in the 
form 
 

2 2 2 2 2 2 2 2( sin )ds dt A dr B d dθ θ ϕ= − − +      (5) 

 
Where, ( )A t  and ( )B t  are the functions of the 

cosmic time t only. The energy momentum tensor 
for the dark matter and holographic dark energy are 
respectively defined as  
 

jimij uuT ρ=                            (6) 
 

( )ij i j ijT p u u p gλ λ λρ= + −                    (7) 

 
Here

mρ , λρ  
are the energy densities of dark matter 

and the holographic dark energy and λp  is the 

pressure of the holographic dark energy. 
In a co-moving coordinates system, from Eqns. 

(6) and (7), we get 
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3

2
2

1
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Here λρρ ,m  
and λp  are the functions of cosmic 

time t only. 
Now with the help of Eqn. (8), the field 

equations (2) and (3) for the metric in Eqn. (1) can 
be written as 
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Also, the energy conservation equation leads to 
 

3 2 ( ) 0m m

A B
p

A Bλ λ λρ ρ ρ ρ 
+ + + + + = 

 

& &
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Here, the overhead dot denotes differentiation with 
respect to t.  

3.     Solutions of Field Equations 

The field equations (9)-(12) are a system of four 
independent equations with six unknowns 

mpBA ρρλλ ,,,,
 

and φ . In order to get a 
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deterministic solution, we take the following two 
plausible physical conditions: 
(i) The shear scalar σ  is proportional to scalar 
expansion θ , which leads to the following 
relationship between the metric potentials, 
 

mBA =                                (14) 
 
Where, m, for 1≠m , is a constant.  
(ii) Scalar field φ

 
is a function of average scale 

factor ‘a’ [34], i.e., 
 

na0φφ =                                (15) 

 

Where 0φ  and n are arbitrary constants.   

From Eqns. (9), (10) and (14), we get 
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From Eqns. (15) and (16), we get 
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From Eqns. (14) and (17), we get 
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1 2

m
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B c t c

= +
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Where
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1

3
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c

m m n m
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and c2 is 

an integrating constant. 
Thus, the metric (1) can be written as 

 

( ) ( )2 22 2 2 2 2 2
1 2 1 2 ( sin )

m
ds dt c t c dr c t c d dθ θ φ= − + − + +

(19) 
 
and the scalar field φ  

is given by  

 

                        ( )
( 2)

3
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c t cφ φ
+
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              (20)

 
 

Here we are considering the minimally 
interacting matter and holographic dark energy 
components. Hence both the components conserve 
separately, so that we have [35,36] 
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From equations (9)-(11), (18) and (22), we get 
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Fig. 1 describes the behavior of energy density 

( mρ ) and holographic dark energy density (λρ ) 

versus time. It is understood that the energy density 
of ordinary matter and holographic dark energy are 
positive decreasing functions of time t and vanish 
for sufficiently large values of time.   

Fig. 2 depicts the variation of equation of state 
(EoS) parameter (ωλ) versus cosmic time (t). We 

observed that in early stage of evolution of the 
Universe, the EoS parameter ωλ is positive (i.e., the 
Universe represents matter dominated phase) and at 
late time it is evolving with negative value (i.e., at 
the present time). The earlier real matter later on 
converted to the dark energy dominated phase of 
the Universe.  
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Fig.1: The plot of energy densities for holographic dark 

energy ( λρ ) and ordinary matter (mρ ) versus t for m=2, 

n=0.2 and ω=2.    
 

 
Fig.2: The plot of EoS parameter (ωλ) versus t for m=2, 
n=0.2 and ω=2. 

4.     Some Other Important Properties of the 
Models 

The spatial volume and average scale factor of the 
model in Eqn. (20) are given by 
 

( ) 2

1 2 sin
m

V g c t c θ+= − = +                (26) 
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1
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The expression for the expansion scalar θ is given 
by 
 

( )
1

1 2

( 2)c m

c t c
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The Hubble parameter is given by   
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1
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The shear scalar is given by 
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The deceleration parameter is given by 

 
3

1
2

q
m

= − +
+

                          (31) 

 
A positive sign of the deceleration parameter q 

indicates the standard decelerating model, whereas 
the negative sign indicates the inflating model. 
Recent observations show that the deceleration 
parameter of the model is in the range of −1 < q < 
0 and the present day universe is undergoing an 
accelerated expansion. From Eqn. (31), it is 
observed that deceleration parameter q is in the 
range (-1,0) for m>1 and hence the model 
represents accelerated expansion of the universe.
  

The mean anisotropic parameter is given by 
 

2

2

8( 1)

3( 2)m

m
A

m

−=
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                       (32) 

 
The Jerk parameter is given by 

 

2)2(

)4)(1(

+
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m

mm
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The Look-back time is given by 

 
3

1 2
0
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3
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−
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as ,z→ ∞  we get present age of the Universe i.e.,  

1
0

0

( 2)

3

H m
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The Luminosity distance is given by  
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5.     Conclusions 

Here, we have presented spatially homogeneous 
and anisotropic Kantowski-Sachs holographic dark 
energy model in Brans-Dicke theory of gravitation.  
• The volume of the model is vanishing at *tt =  

where 
1

2
* c

c
t −=   and expansion scalar θ is 

infinite, which shows that the Universe starts 
evolving with zero volume at *tt =  with an 

infinite rate of expansion. The pressure, energy 
density and shear scalar diverge at *tt = .  

• As t → ∞, the scale factor and volume become 
infinite whereas σ, θ tend to zero. Thus the rate 
of expansion slows down with the increase of 
time. 

• For our model the EoS parameter ωλ is positive 
i.e., the Universe was matter dominated in early 
stage but in late time, the Universe is evolving 
with negative values i.e., the present epoch (see 
Fig. 2). Also the EoS parameter is in good 
agreement with the limit of latest observational 
results [37,38]. Thus our holographic dark 
energy model represents realistic model.  

• Our model represents accelerating universe and 
deceleration parameter q is in good agreement 
with the recent observational data for m>1. For 

1m≠ , the model is anisotropic throughout the 
evolution of the Universe. Also, we have 
obtained the expressions for look back time and 
luminosity distance versus red-shift. 
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