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The question of chaos in the equations of Yang-Mills is not a trivial and straightforward one. We study the stability and chaotic 
behaviour of a quantum version of a Yang-Mills gauge theory. We show that the Quantification of the theory does not remove 
the high sensitivity to initial conditions seen in classical case and the non-integrability remains. Then we modelled the 
interference as a white noise and wrote the equations in the form of a stochastic system of equations (SDE). We demonstrate 
that the solution of this system is unique and does not explode in a finite time. 

 
 

1. Introduction  
The great achievements of theoretical physics in the 
20th century, Einstein’s theory of general relativity 
(G-R) and the Yang-Mills theory (Y-M) of non-
Abelian gauge fields, have many common 
properties: both are gauge theories and they are 
nonlinear. From this point of view, the chaoticity of 
the corresponding fields is not a surprise. On the 
other hand, there are many examples of stable 
solutions of nonlinear field equations. Thus, the 
question of chaos in the equations of G-R and Y-M 
is not a trivial and straightforward one. 
    The meaning of chaos in a field theoretical system 
has already been examined. In the context of particle 
physics, Matinyan et al [1] were the first to show that 
classical Yang-Mills system is a K-one. Nikolaevsky 
and Shchur conjectured that if chaos is present in the 
dynamics of homogeneous field then it is present in 
the full field theory [2]. This was confirmed in the 
Y-M field [3]. In this work, we will consider a little 
bit complication: we add quantum to the previous 
study. 
    Chaos is a manifestation of highly sensitive 
trajectories to initial conditions [4-5]. In quantum 
physics, there are no trajectories in the classical 
sense and so there is a problem in connecting 
dynamical behaviour (chaoticity) with quantum 
phenomena (both Schrodinger and Dirac quantum 
evolution equations are linear). We overcome the 
difficulty by defining chaos as a manifestation of 
highly sensitive systems to initial conditions or: 

“Big changes in final states induced by small 
perturbations in initial conditions” 

    This allows us to go beyond the classical notion of 
trajectories to consider only the evolution of states of 
the quantum system. This is the main property used 
in our work to study the dynamical behavior in 
quantum version of gauge theories like Yang-Mills 
types. 
    We have shown that the equations of motions are 
the same as those of the classical system if we 
neglect the interference term. By using the Painlevé 
test [6], [7], we demonstrate that the theory is non-
integrable.  We use also the graphical procedure to 
make evident the sensitivity of the theory to initial 
conditions. Finally, we modelled the interference as 
a white noise and so wrote the equations in the form 
of a stochastic system of equations. We used the 
Khasminskii procedure [8] to demonstrate that the 
solution of this system is unique and does not 
explode in finite time. 
 

2. Quantum Yang-Mills System as a 
Dynamical System 

We write the Lagrangian of a 𝑆𝑈(2) quantum Y-M 
system as: 

 )1 .(  𝐿 = −
ଵ

ସ
൫𝐹ఓఔ

௔ ൯
ଶ

−
ଵ

ଶక
൫𝜕ఓ𝐴ఓ൯

ଶ
− 𝐶̅௔𝜕ఓ𝐷ఓ𝐶௔ 

Latin alphabet 𝑎 = 1,2,3 corresponds to Isospin and 
Greek symbols 𝜇, 𝜈 = 0,1,2,3 to Lorentz 
coordinates. 

 )2 .(  𝐹ఓఔ
௔ = 𝜕ఓ𝐴ఔ

௔ − 𝜕ఔ𝐴ఓ
௔ + 𝑔𝜀௔௕௖𝐴ఓ

௕𝐴ఔ
௖ 

Where,  𝐴ఓ
௔  are gauge fields and (𝐶̅௔)𝐶௔  are anti-

ghosts. We have to remark that, in our case, all the 
fields are operators and thus do not commute. 
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We use the BRST (Becchi, Rouet, Stora and Tyutin) 
transformations [9-10] (𝜆 is a Grassmann constant): 

 )3 .(   

⎩
⎪
⎨

⎪
⎧ 𝛿𝐴ఓ

௔ = −
ଵ

௚
൫𝐷ఓ𝐴௔ఓ൯𝜆

𝛿𝐶௔ = −
ଵ

ଶ
𝜀௔௕௖𝐶௕𝐶௖𝜆

𝛿𝐶̅௔ = −
ଵ

௚క
൫𝐷ఓ𝐴௔ఓ൯𝜆

 

The quantum equations of motion are as follows: 

 )4 .(   

⎩
⎪
⎨

⎪
⎧

𝜕ఓ𝐹௔ఓఔ + 𝑔𝜀௔௕௖𝐴ఓ
௕𝐹௖ఓఔ +

ଵ

క
𝜕ఓ𝜕ఓ𝐴௔ఔ = 𝑔𝜀௔௕௖𝐶̅௕𝐶௔

𝜕ఓ൫𝜕ఓ𝐶௔ + 𝜀௔௕௖𝐴ఓ
௕𝐶௖൯ = 0

𝜕ఓ𝜕ఓ𝐶̅௔ + 𝜀௔௕ 𝐴ఓ
௕𝜕ఓ𝐶̅௖ = 0

 

We use the temporal gauge 𝐴଴
௔(𝑥, 𝑡) = 0. The BRST 

are preserved, if we take: 𝜕଴𝐶௔ = 0 ; 𝜕଴𝐶̅௔ = 0. 
We consider the spatially homogeneous fields: 

 )5 .(   ቐ

𝐴௜
௔ ≡ 𝐴௜

௔(𝑡)

𝜕௜𝐴௜
௔ = 0

𝜕௜𝐶௜ = 0

 

To obtain the new equation of motion 

 )6 .(  ቐ

𝐴̈௜
௔ + 𝑔ଶ𝐴௝

௕൫𝐴௜
௔𝐴௝

௕ − 𝐴௝
௔𝐴௜

௕൯ = 0

∏𝐶௔ = 0

∏𝐶̅௔ = 0

 

If one makes the substitution (we do not sum over 𝑎) 

 )7 .(  𝐴௜
௔(𝑡) = 𝑂௜

௔𝑓௔(𝑡) &  𝑂௜
௔𝑂௜

௕ = 𝑔ିଵ 
Where, 𝑂௜

௔  are orthogonal matrices, we can see that 
the Gauss law is verified 

 )8 .(   𝐴̇௜
௔𝐴௝

௕ − 𝐴௜
௔𝐴̇௝

௕ = 0 

The equation of motion takes now the form 

 )9 .(   𝑓̈௔ + ∑ (𝑓௕)ଶ𝑓௔
௕ஷ௔ = 0 

We choose a global gauge  𝑂௜
௔ = 𝛿௜

௔/𝑔, so Isospin 
directions become spatial ones 𝐴௜

௔ = 𝑓௔; equation of 
motion are 

 )10 .(   ቊ
𝑓̈ଵ + (𝑓ଶ)ଶ𝑓ଵ = 0

𝑓̈ଶ + (𝑓ଵ)ଶ𝑓ଶ = 0
 

Where 𝑓ଵ and𝑓ଶ are operators in the Hilbert space. 

The system is in the physical state, ห𝜓௣〉 ∈ 𝐻, and the 

equation of motion can be written in Heisenberg 
representation as follows (Summation is over 𝑞 and 
𝑞′): 

 )11 .( 

⎩
⎪
⎨

⎪
⎧

ൻ𝜓௣ห𝑓ଶ ∑ห𝜓௤ᇲൿൻ𝜓௤ᇲห 𝑓ଶ ∑ห𝜓௤ൿൻ𝜓௤ห 𝑓ଵห𝜓௣ൿ

+ൻ𝜓௣ห𝑓̈ଵห𝜓௣ൿ = 0

ൻ𝜓௣ห𝑓ଵ ∑ห𝜓௤ᇲൿൻ𝜓௤ᇲห 𝑓ଵ ∑ห𝜓௤ൿൻ𝜓௤ห 𝑓ଶห𝜓௣ൿ

+ൻ𝜓௣ห𝑓̈ଶห𝜓௣ൿ = 0 

 

Finally, we write it as a dynamical system 

 )12 .( 

⎩
⎪
⎨

⎪
⎧𝑈̈ + 𝑉ଶ𝑈 = ൽ𝜓௣ቤ

𝑓ଶ ∑ ห𝜓௤ᇲൿൻ𝜓௤ᇲห௤ᇲஷ௣

𝑓ଶ ∑ ห𝜓௤ൿൻ𝜓௤ห௤ஷ௣ 𝑓ଵ
ቤ𝜓௣ඁ

𝑉̈ + 𝑈ଶ𝑉 = ൽ𝜓௣ቤ
𝑓ଵ ∑ ห𝜓௤ᇲൿൻ𝜓௤ᇲห௤ᇲஷ௣

𝑓ଵ ∑ ห𝜓௤ൿൻ𝜓௤ห௤ஷ௣ 𝑓ଶ
ቤ𝜓௣ඁ

 

Taking, 

 )13 .(  ቊ
𝑈 = ൻ𝜓௣ห𝑓ଵห𝜓௣ൿ

𝑉 = ൻ𝜓௣ห𝑓ଶห𝜓௣ൿ
 

Our quantization procedure differs from the one used 
by Nicolaidis et al. in [12], but we consider that it is 
more direct and more consistent with the principles 
of quantum mechanics.  
The right terms in equation (12) are interference 
parts. We start by taking them equal to zero by 
considering that there are no connections between 

ห𝜓௣〉and the other states, and then we will model 

them as a white noise.  
 

3. Painlevé Test 
If we consider that there is no connections between 

the physical state ห𝜓௣〉and the other states ห𝜓௣〉, then 

equations (12) becomes identical to the classical 
ones [1] 

 )14 .(  ൜𝑈̈ + 𝑉ଶ𝑈 = 0
𝑉̈ + 𝑈ଶ𝑉 = 0 

 

This system corresponds to the case of the quartic 
potential 𝑥ଶ𝑦ଶ that has been widely studied for its 
strong chaotic behaviour and its applications in 
different domains both in physics and chemistry (for 
further information, one can see [13 -16] and 
references therein). 
    We mention here that, unlike the aforementioned 
references, the elements in (10) are operators and not 
real functions, and this is what led us to use the mean 
values in the state of the system to get (11) and (12). 
We start studying the chaoticity of this system using 
the Painlevé test [6-7] based on three steps: 

1- Determine if the solutions are analytically 
continued; 

2- Determine the leading singularity; 
3- If it is not more than a branch or a pole, then 

make Laurent expansion. Determine the 
power for which the coefficients become 
arbitrary, Kowalewsky exponents or 
resonances. 

Then one can use the necessary condition for the 
system to be integrable. 
 

4. Kowalewsky exponents should be 
rational numbers 

Let us pass the test now. To find the leading  
singularity, we make the ansatz: 

 )15 .(  ൜
𝑈(𝑡) = 𝑎(𝑡 − 𝑡଴)ିఈ

𝑉(𝑡) = 𝑏(𝑡 − 𝑡଴)ିఉ 

Where, 𝑡଴ represents the movable singularity 
location. 
Replacing in the equations and balancing the most 
singular terms give us the following: 



The African Review of Physics (2019) 14 : 0003 
 

12 
 

 )16 .(  

⎩
⎪
⎨

⎪
⎧ 𝑎𝛼(𝛼 + 1)(𝑡 − 𝑡଴)ିఈିଶ

+𝑎𝑏ଶ(𝑡 − 𝑡଴)ିఈିଶఉ = 0

𝑏𝛽(𝛽 + 1)(𝑡 − 𝑡଴)ିఉିଶ

+𝑎ଶ𝑏(𝑡 − 𝑡଴)ିఉିଶఈ = 0 

 

We get 

 )17 .( 

⎩
⎨

⎧
−𝛼 − 2 = −𝛼 − 2𝛽 ⟹ 𝛽 = 1

𝑎𝛼(𝛼 + 1) + 𝑎𝑏ଶ = 0 ⟹ 𝑏ଶ = −2
 – 𝛽 − 2 = −𝛽 − 2𝛼 ⟹ 𝛼 = 1

𝑏𝛽(𝛽 + 1) + 𝑎ଶ𝑏 = 0 ⟹ 𝑎ଶ = −2

 

It is OK! We write now the resonances 

 )18 .( ൜
𝑈 = 𝑎(𝑡 − 𝑡଴)ିఈ + 𝑝(𝑡 − 𝑡଴)ିఈା௥

𝑉 = 𝑏(𝑡 − 𝑡଴)ିఉ + 𝑞(𝑡 − 𝑡଴)ିఉା௥ 

Replacing in the equations and balancing terms 
linear in 𝑝 and 𝑞, we find that 

 )19 .( (𝑟ଶ − 3𝑟 − 4)(𝑟ଶ − 3𝑟 + 4) = 0 
Resolving this equation gives us the possible values 
of 𝑟 as 

 )20 .(  

⎩
⎪
⎨

⎪
⎧ 𝑟 = −1

𝑟 = 4

𝑟 = ൫3 + 𝑖√7൯/2

𝑟 = ൫3 − 𝑖√7൯/2

 

The resonances are not rationales (even not real) and 
our dynamical system fails Painlevé test. 
 

5. Graphical Study 
Now we study of the equations (14) using a graphical 
procedure based on the main characteristic of chaos 
which is the dependence of the graphs to 
infinitesimal changes in initials conditions. As an 
example, we put all the initial conditions equal to 1 
(in no way this diminishes the generality of the 
results).We will focus on the curves representing the 
solutions of the dynamical system and the 
representation of solutions in phase space for each 
variable. 

 
Fig.1. Solutions 𝑈(𝑡)& 𝑉(𝑡) for 𝑈(0) =

1, 𝑉(0) = 1, 𝑈̇(0) = 1, 𝑉̇(0) = 1 
 
    We note that the solutions are harmonic up to 𝑡 =

40𝑠 and then begins a phase in which they become 
unpredictable; we call this edge horizon time 
because it is the time for which the movement is 
regular and so can be predicted. The same thing can 
be seen in the phase space of the first variable 
(Figure 2). 

 

 
Fig.2. Solution in (𝑈, 𝑈̇) space for 𝑈(0) =

1, 𝑉(0) = 1, 𝑈̇(0) = 1, 𝑉̇(0) = 1 
 

    The closed curve corresponds to the horizon time 
and characterizes the harmonic motion, while the 
irregular curve indicates the phase of predictability 
loss. 
    In Figure 3, the same behavior is shown in the 
phase space of the second variable and thus, it is 
proved that this evolvement to unpredictability is 
common to the two dynamical variables that define 
the evolution of our system. 

 
Fig.3. Solution in (𝑉, 𝑉̇) space for 𝑈(0) =

1, 𝑉(0) = 1, 𝑈̇(0) = 1, 𝑉̇(0) = 1 
     
    Now we make a tiny change in initial conditions 
and see the results on the solutions of our dynamical 
system. We choose to add 10ି଻  to the value of 

𝑈(0)then to 𝑈̇(0)and look in each case to changes 
induced. We chose this value because of Lorenz use 
a change of 10-6 in initial values to demonstrate the 
presence of chaos in his equations of movement of 
the air [4-5]. Curves induced by these changes and 
drawn below and should be compared to the previous 
ones represented above. 
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Fig.4. Solutions 𝑈(𝑡)& 𝑉(𝑡) for 𝑈(0) = 1, 𝑉(0) =

1 + 10ି଻, 𝑈̇(0) = 1, 𝑉̇(0) = 1 
 

    When comparing with Fig.1, one can easily see 
that the fact of varying, even minimally, just one 
initial condition strongly changes the shape of the 
curves. Similarly, the horizon time has also 
decreased and we can say that if time exceeds this 
value then it can be regarded as large or infinite 
compared to the conditions of the experiment. This 
clearly demonstrates the sensitivity of the final states 
of the system to the slightest variations in its initial 
conditions. 
    The same thing occurs when varying the initial 
velocity instead of the position (to be compared to 
Figure 1). 
 

 
 

Fig.5. Solutions 𝑈(𝑡)& 𝑉(𝑡) for 𝑈(0) = 1, 𝑉(0) =

1, 𝑈̇(0) = 1, 𝑉̇(0) = 1 + 10ି଻ 
     
In this case also, the same kinds of variations in the 
graphs are seen when changing the initial conditions 
of the first variable with the same amount. 
    Also in phase spaces, we can see the variations 
induced by these changes in initial conditions. 
 

 
 

Fig.6. Solution in (𝑈, 𝑈̇) space for 𝑈(0) =

1, 𝑉(0) = 1 + 10ି଻, 𝑈̇(0) = 1, 𝑉̇(0) = 1 

 

 
Fig.7: Solution in (𝑈, 𝑈̇) space for 𝑈(0) =

1, 𝑉(0) = 1, 𝑈̇(0) = 1, 𝑉̇(0) = 1 + 10ି଻ 
 

    Figures 6 and 7 should be compared to Figure 2. 
The closed curve characterizes the original harmonic 
motion, but the lines that indicate the irregularities 
are still present and are also more marked as one can 
see from the 𝑈-axe, where the curves do not exceed 
the position 𝑈 = 3  in Figure 2, while they pass 
beyond 𝑈 = 4 in Figure 7 and even go up to 23 in 
Figure 6.  
    In the same manner, we show the same effects on 

curves in the (𝑉, 𝑉̇) phase space when the results 
obtained by varying initial conditions are compared 
to Figure 3. 
 

 
Fig.8. Solution in (𝑉, 𝑉̇) space for 𝑈(0) =

1, 𝑉(0) = 1 + 10ି଻, 𝑈̇(0) = 1, 𝑉̇(0) = 1 
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Fig.9. Solution in (𝑉, 𝑉̇) space for 𝑈(0) =

1, 𝑉(0) = 1, 𝑈̇(0) = 1, 𝑉̇(0) = 1 + 10ି଻ 
 

6. Stochastic Model: 
We write the interferences terms in Eqn. (12) as 

white noises Ẇ (a derivative of a Brownian noise W) 

 )21 .(  ቊ
𝑈̈ + 𝑉ଶ𝑈 = 𝑊̇ଵ(𝑡)

𝑉̈ + 𝑈ଶ𝑉 = 𝑊̇ଶ(𝑡) 
 

This is because we consider quantum mechanics as a 
random process [17-18-19]. We choose white noise 
because we have no information on the interferences 
terms in our system and this noise is a realization of 
a random process in which the power spectral 
density is the same for all frequencies [20]. 
We have also found recently that there are works, 
which began to investigate potentials consisting of 
noises in quantum systems [21-23]  
    We use the notations 

 )22 .(  𝑋(𝑡) = ൬
𝑈(𝑡)

𝑉(𝑡)
൰ , 𝜎(𝑋(𝑡)) =

ቀ
1 0
0 1

ቁ , 𝑏(𝑋(𝑡)) = ൬
𝑉ଶ(𝑡)𝑈(𝑡)

𝑈ଶ(𝑡)𝑉(𝑡)
൰ 

Here 𝑋(𝑡), 𝑏  and 𝜎  are functions: 𝑋(𝑡): ℝ →

ℝ௡, 𝑏: ℝ௡ → ℝ௡; 𝜎: ℝ௡ → 𝑀ℝ(𝑛)  where ℝ  are real 
numbers, 𝑀ℝ(𝑛) real matrices of rank 𝑛 (𝑛 = 2 in 
our case) and time 𝑡 is always positive. 
The equation of motion becomes a stochastic 
equation 

 )23 .( 𝑋̈(𝑡) + 𝑏(𝑋(𝑡)) = 𝜎൫𝑋(𝑡)൯𝑊̇(𝑡) 

The conditions for a stochastic differential equation 
to have a unique solution that does not explode in a 
finite time [8] are 

1. ∀𝑅 > 0, ∃𝐾ோ > 0/|𝑏(𝑌) − 𝑏(𝑋)| +

|𝜎(𝑌) − 𝜎(𝑋)| ≤ 𝐾ோ|𝑌 − 𝑋|, ∀|𝑋| ≤

𝑅, ∀|𝑌| ≤ 𝑅 
2. 𝑋଴ 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑜𝑓 {𝑊(𝑡), ∀ 𝑡 > 0}  and 

𝐸(𝑋଴) < ∞ 
3. ∃𝐹: ℝ௡ → ℝା / ∀𝑋 ∈ ℝ௡ , 𝐿𝐹(𝑋) ≤

𝑐𝐹(𝑥)& 𝐹(𝑋) → +∞ 𝑖𝑓 |𝑋| → +∞  
𝐸(𝑋଴) is the expected value for the random variable 
𝑋, 𝑋଴ is its initial value, 𝑐 is a positive constant, 𝐹 is 
the Lyapounov function (in our case it is a 𝐶ଶ class 
one) and 𝐿  is the differential generator associated 
with the diffusion process solution of stochastic 
differential equation 

 )24 .(  𝐿 = ∑ 𝑏௝(𝑋)
డ

డ௑ೕ

௡
௝ୀଵ +

ଵ

ଶ
∑ 𝑎௝௞(𝑋)

డమ

డ௑ೕడ௑ೖ

௡
௝,௞ୀଵ ; 𝑎(𝑋) = 𝜎(𝑋)𝜎்(𝑋) 

Putting 𝑌̇(𝑡) = 𝑋(𝑡) in above equation, we get the 
stochastic system: 

 )25 .( ቐ

𝑑𝑋(𝑡) = 𝑌(𝑡)𝑑𝑡

𝑑𝑌(𝑡) = −𝑏൫𝑋(𝑡)൯𝑑𝑡 + 𝜎൫𝑋(𝑡)൯𝑑𝑊(𝑡)

𝑋(𝑡 = 0) = 𝑋଴, 𝑌(𝑡 = 0) = 𝑌଴

 

The generator of this system is 
 )26 .(  𝐿 = 〈𝑌, ∇௑〉 − 〈𝑏, ∇௒〉 +

ଵ

ଶ
𝑡𝑟[𝜎(𝑋)𝜎்(𝑋)𝐷ଶ𝑌] 

Where〈 ,  〉 refers to the scalar product in ℝଶ and the 
derivative operators are: 

 )27 .( 𝛻௑ = ቀ
డ

డ௎
,

డ

డ௏
ቁ , 𝛻௒ = ቀ

డ

డ௎̇
,

డ

డ௏̇
ቁ , 𝐷ଶ𝑌 =

ቌ

డమ

డ௎డ௎̇

డమ

డ௎డ௏̇

డమ

డ௏డ௎̇

డమ

డ௏డ௏̇

ቍ 

    Now we apply the assumptions for the 
Khasminskii criterion by finding the 𝐹 function that 
fulfills the three conditions. We choose 𝐹 = 〈𝑋, 𝑌〉/

2 + 𝐾  where 𝐾  is a positive constant to be 
sufficiently large to ensure that: 

 )28 .( 𝐹(𝑋, 𝑌) ≥ 0, ∀(𝑋, 𝑌) ∈ ℝଶ ×

ℝଶ& 𝐹(𝑋, 𝑌) → 0 𝑖𝑓 𝑅 = |𝑋|ଶ + |𝑌|ଶ → +∞ 

We recall that 𝑌̇(𝑡) = 𝑋(𝑡) and 𝐹(𝑋, 𝑌) is actually a 
function of a single variable 𝐹(𝑋). 
    The action of the generator  𝐿  on this function 
gives: 

 )29 .( 𝐿𝐹(𝑋, 𝑌) = 〈𝑌, 0〉 − 〈𝑏(𝑋), Y〉 + 1 
To satisfy the first Khasminskii requirement one has 
to choose 𝑏 locally Lipschitz continuous and this 
ensures that: 

 )30 .( ∃𝐾ଵ > 0, ∃𝑐 > 0 / 〈𝑏(𝑋), 𝑌〉 +
௖|௒|మ

ଶ
+

𝐾ଵ ≥ 1 
    The second Khasminskii requirement is 
automatically satisfied as the initial conditions in 
Eqn. 25 are not dependent on the noise. 
    Now to check the third Khasminskii requirement, 
we apply the differential generator 𝐿 on the selected 
function: 

 )31 .( 𝐿𝐹(𝑋, 𝑌) ≤
௖|௒|మ

ଶ
+ 𝐾ଵ = 𝑐𝐹(𝑋, 𝑌) − 𝑐𝐾 +

𝐾ଵ 

We choose 𝐾 ≥
௄భ

௖
  so we get: 

 )32 .( ∀(𝑋, 𝑌) ∈ ℝଶ × ℝଶ, 𝐿𝐹(𝑋, 𝑌) ≤

𝑐𝐹(𝑋, 𝑌), 𝑐 > 0 
This last equation achieves the verification of all the 
Khasminskii conditions for our stochastic 
differential system and we can conclude that this 
system, which represent the quantum case, has a 
unique solution that does not explode in a finite time 
and we find: 

 )33 .( 𝑌(𝑡) = ∫ 𝑏൫𝑋(𝑠)൯𝑑𝑠
௧

଴
+ 𝑊(𝑡) − 𝑊(0) +

𝑌଴ 
This completes our demonstration on the 
Khasminskii criteria. 
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7. Conclusion 

In this work, we have studied a quantum version of 
a 𝑆𝑈(2) Yang-Mills system whose classical version 
has been studied from a dynamical point of view. We 
found that the quantum equations of motion differ 
from classical ones with a term of interference 
between different states in the Hilbert space. This is 
evident because the interference is a major feature of 
quantum physics [18-19]. 
    We first studied the equations without the 
interference term and we have demonstrated that it is 
not integrable in the sense that it has a chaotic 
behaviour. This was demonstrated by applying the 
Painlevé test to these equations representing our 
dynamical system and by studying the variations 
induced in final states in the graph of solutions of our 
system by tiny changes in initial conditions, which is 
the definition of chaos. These noticeable changes in 
the final states are present even when using 

variations in initial conditions equal to 10ିଵହ. 
    Then we modelled interferences as white noise, 
which is consistent with their chaotic nature [18-19]. 
We investigated the stochastic system obtained using 
the criteria of Khasmiinski and demonstrated that the 
system has a solution that does not explode in a finite 
time; It may considered here that the interferences 
act as a regulator of the chaoticity of the original 
system. But, we must say that this cannot be regarded 
as an evidence and it will be better if one perform 
Painlevé conjecture to cover operators. 
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