
African Physical Review (2008) 2 Special Issue (Microelectronics): 0033 70

An Ad-hoc IP Functional Verification Procedure

A. K. Oudjid, D. Benamrouche, R. Tiar, M. Goudjil and A. Liacha
Centre de Développement des Technologies Avancée (CDTA), Algiers

This paper presents an ad-hoc IP-verification procedure that is used to verify the conformity between the IP
specifications and their corresponding HDL-code implementation. The verification procedure is a general purpose solution
offering an automatic validation to any IP design. The purpose of this paper is to provide a full description of the verification
procedure and how to tailor it in order to fit any particular needs. The Ad-hoc verification procedure has been used to
validate several designed IPs, notably: FIFO, Transceiver and I2C-salve. The whole procedure code is implemented in both
Verilog 2001 (IEEE 1365) and VHDL (2002).

1. Introduction

To ensure that the implemented design fully meets
the initial specifications, the design must undergo
two types of verification: at core level (cycle
accurate test bench) and at board level (C-software
test bench.)

1.1. Core level verification

Each unit of the architecture is tested separately.
First, each unit is challenged against a set of severe
special cases, and then against a very large number
of random patterns. Once all units tested
successfully, the same test process is repeated for
the whole IP core.

For the ease of verification, a fully automated
verification procedure (self-checking HDL test
bench) is used (Fig. 1) For this purpose, we used
the Unix Gawk tool to generate a parametrizable
number of random-pattern files, which are
submitted to both the synthetisable RTL code and
to the behavioural test bench code for simulation.
The simulator (Modelsim,), which runs in batch
mode, performs a comparison between the
delivered results and reports error if there is any. In
case of an error, the Tcsh process is stopped and a

visual simulation (wave mode) is performed on the
responsible pattern-file to localize the bug. In the
case when there is no error, the whole process is
reiterated using Tcsh (Unix shell tool.)

1.2. Board Level Verification

The hardware (evaluation board) used for the SoC
application is represented by the PCB of [1]. The
system includes an ARM9TDMI as central 32-Bits
CPU and different standard IO ports like 10/100
Ethernet and USB 1.1 together with a standard
memory bus connecting SRAM, SDRAM and
FLASH to the CPU. A free programmable FPGA
for the implementation of approx. 30,000 gates
allows any additional digital I/O interface. The
system runs under a mini Real Time Operating
System. A standard ARM based software
development toolkit (assembler, compiler,
debugging tools etc.,) is applied to the system.
Concerning simulation of the total system, all
modules are available in a common data base as
HDL file or PLI file (for ARM9TDMI) as well as
at the gate net list level in a readable or an
encrypted version.

M odelsim

Tcsh

G aw k

Random
Pattern
Files

Behavioral
Testbench

Code

Synthesizable
RTL
Code

Com parison
Error
File

Yes

No

V isual
S im ulation

 Fig 1. Autom ated V erification Procedure

African Physical Review (2008) 2 Special Issue (Microelectronics): 0033 71

This system has been used to validate our
designed IPs (FIFO, Transceiver, I2C) core at board
level. We wrote a C interrupt–driven application
using n-empty and n-full interrupts that verifies that
the frame-transfers between a software FIFO and
our I2C transceiver FIFO are correct. To make the
C application independent from the hardware,
drivers have been developed

2. Concluding remarks

FV is indispensable. To be marketable, a design
must be functionally correct and provide features
required by its customers. But FV always takes at
least twice as much effort as the design itself. This
is why FV is currently the target of new tools and
methodologies, which attempt to reduce the overall
verification time by enabling parallelism of effort,
higher levels of abstraction and automation [2].

Throughout this paper, we presented a self test
ad-hoc FV procedure mainly based upon
automation, allowing faster and predictable results.
However, despite the general-purpose character of
our FV procedure, automation requires standard
processes with well defined inputs and outputs. Not
all processes can be automated because of the
variety of functions, interfaces, protocols and
transformations. In such a case, it is always
possible to use our ad-hoc FV procedure to
automate some portion of the verification process,
especially when applied to a narrow application
domain.

References

[1] A. K. Oudjida et al., “Master-Slave Wrapper
Communication Protocol: A Case Study,”
Proceedings of the 1st IEEE International
Computer Systems and Information
Technology Conference ICSIT’05, pp. 461-
467, 19-21 July 2006, Algiers, Algeria.

[2] Janick Bergeron, Writing Testbenches,
Functional Verification of HDL Models
(Kluwer Academic Publisher, Copyright
2001).

