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Here we study the modified Klein-Gordon equation (MKGE) with a unequal mixture of scalar and vector Yukawa (MUSVY) potentials describing 
the 3-dimensional dynamics in non-commutative quantum mechanics (NCQM) using the Bopp’s shift method and standard perturbation theory. 

The new energy of 
thn excited state  mljnVSaE y

ncr
,,,,,, 00

 as a functions of the shift energy  msljnE ,,,,  and nE  of an unequal 

mixture of scalar and vector modified Yukawa  potentials is obtained via first-order perturbation theory in the relativistic 3-dimensional non-
commutative real space (RNC: 3D-RS) of symmetries. We found that the perturbative solutions of the discrete spectrum dependent on the Gamma 

function, the discreet atomic quantum numbers  mslj ,,,  and the potential parameters ( a , 0V and 0S ), in addition to non-commutativity 

parameters ( and ), which are induced by the effect of (space-space) non-commutative properties. We have also applied our results for a 

bosonic particle with spin one and have shown that the MKGE under MUSVY potentials become similar to the Duffin–Kemmer equation. In 
addition, we have shown that the doubled total degeneracy of energy level for bosonic particles with spin one in RNCQM symmetries under the 
MUSVY potentials is clear physical indicator that physical treatment with RNCQM appear more detailed and clear if compared with similar 
energy levels obtained in ordinary relativistic quantum mechanics. Furthermore, we considered the nonrelativistic limits of MUSVY potentials. 

 

 

1.  Introduction 

The Yukawa potential, also known  as static screened Coulomb, 
Debye-Hückel or Thomas-Fermi potential, of various types has 
received a great deal of attention in many fields of physics such 
as nuclear physics, atomic physics, solid-state physics, and 
astrophysics. This potential has received considerable attention 
since the early days of quantum mechanics because of its wide 
range of applications and one of the oldest known since 1935 by 
researchers and interesting at the microscopic scale [1-4].  

    Furthermore, this potential also plays a vital role in plasma 
physics where it is known as the Debye-Huckel potential. In 
addition to these obvious physical applications, this together 
with Hulthen and the exponential potentials plays an important 
role as a good test case in potential scattering studies [4-7]. It is 
often used to compute bound-state normalizations and energy 
levels of neutral atoms [8-12]. It also used to compute bound-
state normalizations and energy levels of neutral atoms used in 
(dusty/complex) plasma and colloidal suspensions [13]. Yukawa 
was the first to propose it and was studied in both relativistic and 
non-relativistic quantum mechanics [1].  

    The study of the Yukawa potential in the relativistic Dirac 
equation in previous years received great attention from many 
authors [13-15]. They have theoretically and numerically 
obtained the energy eigenvalues of the system. In [16], Hamzavi 
and Ikhdair investigated a relativistic quantum mechanical 
system with the Duffin–Kemmer–Petiau equation for a vector 
Yukawa potential with arbitrary total angular momenta and 
obtained the energy eigenvalues of the system. In 2013, M. 
Hamzavi et al. investigated the spin-zero Klein–Gordon particles 

in the field of a unequal mixture of scalar and vector Yukawa 
potentials within the framework of the approximation scheme 
to the centrifugal potential term for any arbitrary l-state [17]. 
In 2016, we have studied this potential in the case of 
relativistic non-commutative quantum mechanics using the 
parameters of Bopp’s shift method for one-electron atoms 
with spin half [18]. In particular, Yukawa potential used to 
describe the interactions of hydrogen-like atoms and neutral 
atoms. In this work, motivated by several recent studies such 
as the non-renormalizability of the standard model, string 
theory, quantum gravity, the non-commutative quantum 
mechanics NCQM has attracted much attention [19-23]. 
Furthermore, research findings show that the development of 
matrix theory and D-branes are achieved in the framework of 
the symmetries of non-commutative quantum mechanics [24-
25].  

    The idea of non-commutative phase-space was known 
firstly by Heisenberg in 1930 and was formalized by Snyder 
in 1947 because of the need to regularize the divergence of 
the quantum field theory. The aim of the present work is to 
extend the KG equation in an arbitrary 3-dimension with the 
unequal mixture of scalar and vector Yukawa potentials to 
the case of the modified Klein-Gordon equation MKG 
equation in the non-commutative 3-dimensional space with 
the unequal modified mixture of scalar and vector Yukawa 
(MUSVY) potentials in order to find other applications and 
more profound interpretations in the sub-atomic scales. The 
non-relativistic energy levels under unequal modified 
mixture of scalar and vector Yukawa potentials have not been 
obtained yet in the context of the non-commutative phase-
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space. Thus, the main purpose of this paper is to solve the MKG 
with MUSVY potentials in (RNC: 3D-RSP) symmetries (see 
below): 
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where ZV 0 (  and Z  are the fine-structure constant and 

the atomic number) while a is the screening parameter. The new 
structure of RNCQM based to new time-independent NC 
canonical commutations relations in Schrödinger, Heisenberg 
and Interactions pictures (SP, HP and IP), respectively, as 
follows (throughout this paper, the natural units 1 c  will 
be used) [26-34]: 

       

       









































 ˆ,ˆˆ,ˆˆ,ˆ

  ˆ,ˆˆ,ˆˆ,ˆ

ijIjIijiji

ijeffIjIijiji

itxtxtxtxxx

itptxtptxpx





  (2)                                    

Where eff  is the effective Planck constant,  ijij   with 

  as the non-commutative parameter, a very small parameter 
compared to the energy and elements of antisymmetric 3 × 3 real 

matrix and ij  is the identity matrix, whereas    denote to the 

Weyl Moyal star product, which is generalized between two 

arbitrary functions   xgf  ,  to the new form 

      xgfxgxf ˆˆˆˆ  in (NC: 3D-RS) symmetries as follows 

[35-49]:       
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Where,  2O  stands for second- and higher-order terms of . 

The second in the above equation presents the effects of (space-
space) noncommutativity properties. However, the new 

operators     tpxt iiiH ˆˆˆ  and     tpxt IiIiiI ˆˆˆ   in 

(HP and IP, respectively) are depending on the corresponding 

new operator   iiiS px ˆˆˆ   in SP from the following 

projections relations:   
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  Here,  iiiS px  ,     tpxt iiiH   and 

    tpxt IiIiiI   are the three representations in 

relativistic quantum mechanics, while the dynamics of new 

systems 
 

dt

d tiH
 are described from the following motion 

equations in RNCQM: 
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the operators yp
orĤ  and yp

rĤ  are the unperturbed  and global 

Hamiltonian in RQM  for an unequal mixture of scalar and 

vector Yukawa potentials while yp
orncH 

ˆ   and yp
rncH 

ˆ  the 

corresponding  Hamiltonians for MUSVY potentials in the 

RNCQM. The indices are  3,1, ji  This paper consists of 

four sections and the organization scheme is as follows: In 
the next section, the theory part, we briefly review the Klein-
Gordon equation with unequal mixture scalar vector 
Modified Yukawa potentials based on ref. [17]. Section 3 is 
devoted to studying the MKGE by applying the Bopp's shift 
method and the obtained effective potential. Then, we apply 
the standard perturbation theory to find the energy shift of the 

ground state, the first excited state and the thn excited state, 
which is produced by the effects of modified spin-orbital and 
modified Zeeman interactions. We discuss the nonrelativistic 
limits. Finally, in the last section, a summary and conclusions 
are presented. 

 
2. Overview of Energy Eigen-functions and Eigen-

values for Unequal Mixture of Scalar and Vector Yukawa 
Potentials in RQM 

 
As already mentioned our aim is to obtain the spectrum of 

MKGE with a modified mixture of scalar  rS ˆ  and vector 

 rV ˆ  Yukawa in (RNC: 3D-RSP) symmetries, we need to 

revise the corresponding mixture of scalar  rS  and vector 

 rV  Yukawa in symmetries of ordinary relativistic 

quantum mechanics [17]: 
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Where,    rVrS  , ZV 0 (  and Z  are the fine-

structure constant and the atomic number), a is the screening 

parameter and   is an arbitrary constant demonstrating the 

ratio of the scalar potential to the vector potential. To achieve 
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the goal it is useful to summarize, the KGE with equal scalar and 
vector potentials for a particle of rest mass M  in three-

dimensional relativistic quantum mechanics 3D-RQM [17, 
50]: 
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Where,       ,,, m
lnl YrRr   denotes the complete wave 

function and 2 is the 3-dimensional Laplacian operator. To 

eliminate the first order derivative, we introduce a new radial 
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If we introduce the shorthand notation 
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The reference [17] gives the complete wave function, as a 
function of the Jacobi polynomial and the spherical harmonic 
functions: 
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and nlN is the normalization constant.  Therefore, [17] gives the 

discrete energy eigenvalues of the unequal scalar vector 

modified Yukawa potentials as a function of the principal 

quantum number and angular momentum quantum number l   
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     3. Solution of MKGE for MUSVY Potentials 

 
In this section, we shall give a brief overview for the 
modified mixture unequal scalar vector Yukawa potentials in 
(RNC: 3D-RS) symmetries. To perform this task, for the 
physical form of MKGE it is necessary to apply the notion of 
the Weyl Moyal star product, which we saw previously in the 
Eqn. (3), on the differential equation that satisfied by the 

radial wave function  rU l  in Eqn. (7). Thus, the radial 

wave function  rU l  in (RNC: 3D-RS) symmetries become 

[28-31]  
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The Bopp shift allowed us to simplify the calculation in both 
NRNCQM and RNCQM, this method has been successfully 
applied to RNCQM and NRNCQM problems using modified 
Dirac equation MDE, MKGE and modified Schrödinger 
equation MSE. This method has produced very promising results 
for a number of situations having physical and chemical interest. 
The method reduces three modified fundamental equations 
(MDE, MKGE and MSE) to the (DE, KGE and SE), 
respectively, under the simultaneous translation in space. It 
based on the following new commutator [30-38]: 
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The above equation allows us to obtain the operator 
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The new operators of  rV ˆ  and  rS ˆ can be expressed as [28-31]: 
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After straightforward calculations, we can obtain the important 

terms (  rV ˆ2 and  rS ˆ2 ) which will be used to determine 

modified unequal scalar vector Modified Yukawa potentials in 
(RNC: 3D- RSP) symmetries as: 
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This allows us to write the modified radial part of MKGE in 
(RNC: 3D-RS) symmetries as: 
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Moreover, to illustrate this equation in a simple mathematical 

way, it is useful to enter the following symbol  rVpert , thus the 

radial Eqn. (19) becomes: 
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Now substituting Eqns. (6) and (18) into Eqn. (19), we find 

 rV yp

pert
 in (RNC: 3D-RSP) symmetries as follows: 
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Where, 000 SVk   and 2
0

2
00 SV  . The additive 

part of the effective potential is proportional to the 

infinitesimal vector zyx eee 131211 


.Thus, we 

can consider  rV pert  as a perturbation term compared with 

the parent potential (effective potential operator)  rV yp

pert
 in 

(NC: 3D-RS) symmetries.  Eqn. (20) can not be solved 
analytically for any state because of the centrifugal term and 
the studied potential itself. Therefore, in the present work, we 
considered the following approximation type suggested by 
(Greene and Aldrich) and Dong et al. [56-58]: 
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The purpose here is to give a complete prescription for 
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We have used the orthogonality property of the spherical 
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For the ground state ( 0n ), we have     1,
0

0 zP ll ca , thus the 

above 5-expectation values in Eqn. (25) reduced to the following 
simple form: 
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Comparing Eqn. (26) with the integral of the form [59]: 
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We have the 5-expectation values as:  



   
   

     
   

     
   

     
   

     
   22

43

2/32/3

32/5
     ,

22

32

2/32/3

22/3
    ,

33

42

00

023

4

00

022

3
00

022

3

00

02
2

00

0234

0

00

00

80
2exp

0   and

40
2exp

040
exp

0

20
exp

0800










































ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ca

caca

caca

l

ll

ll

Na
r

ar

Na
r

ar
Na

r

ar

aN
r

ar
Nar







                 (29)

  

                                   

Where, lll ca  00 . For the first excited state ( 1n ), we 
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Thus, the 5-expectation values in Eqn. (25) reduced to the 
following simple form: 
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Where, the 15-elements ijT  are given by: 
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We apply the integral in Eqn. (27) to obtain the 15-elements ijT  as follows: 
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Where, lll ca  11 . The present work is two-fold, the first is to 

correspond to replace 


L  by 


 SL  (
2

13
2

23
2

12  ), 

we have chosen the vector parallel to the spin 


S  and we 

replace 


 SL  by 







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  222

2
SLJ . It is well known, that, 

the group of operators (  ,rH yp

so
, 2J , 2L , 2S and )zJ  forms 

a complete set of conserved physics quantities, the eigenvalues 

of the spin-orbital coupling operator are 

 1()1()1(
2
1)(  sslljjlk , with sljsl  . This 

allows us to obtain the energy shift  sljnE ,,,  due to the 

spin-orbital complying induced by   rV yp

pert
 for the ground 

state, first excited state in (RNC: 3D-RS) symmetries as 
follows: 
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Which can be generalized easily to the thn  excited states in (RNC: 3D-RS) symmetries as follows: 
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The second is corresponding to replace both (


L  and 12 ) by 

( zBL12 and B12 ) in addition to use this relation 

''''',',',, mmllnnz mmlnLmln   (Here,  

''' lml  ). This allows us to obtain the energy shift 

 mnE ,  due to the modified Zeeman effect induced by  

 rV yp

pert
 for the ground state, the first excited state in (RNC: 

3D-RS) symmetries as follows: 
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(36) 

Which can be generalized easily to the thn  excited states in (NC: 3D-RS) symmetries as follows: 
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The superposition principle permitted to deduce the additive 

energy shift  msljnE ,,,,  due to the spin-orbital 

complying and modified Zeeman effect which induced by  

 rV yp

pert
  for the ground state, the first excited state in (RNC: 

3D-RS) symmetries as follows: 
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Which can be generalized easily to the thn  excited states in (RNC: 3D-RS) symmetries as follows: 
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When we look to the expressions of effective MUSVY potentials 

 rV yp

pert
 and effective energy  msljnE ,,,, , it is clear that 

have a carry unit of energy, thus we can deduces explicitly the 

energy  mljnVSaEy

ncr
,,,0,,, 00 


,  mljnVSaEy

ncr
,,,1,,, 00 


 

and  mljnVSaE y

ncr
,,,,,, 00

 corresponding the ground state, 

the first excited state, and the thn  excited state, respectively,  as 

a functions of the shift energy  msljnE ,,,,  and ( lE0 , lE1  

and nlE )  in (RNC: 3D-RS) symmetries as follows:  
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Where lE0 , lE1  and nlE  are obtained from Eqns. (27), (30) 

and (11), respectively. Now, it is important to apply our 

results obtained to the case of a bosonic particle with spin one 

( 1


S ), we have 11  ljl , allows us to obtain three 

values of j  ( llj ,1 ) that gives  
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three values of the energy shift as follows: 
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(41) 

The above results of the degenerate energy shift and Eqn. (40) gives the energy of a bosonic particle with 1


S under the MUSVY 
potentials as follows: 

 
  
  
  


















1for,1,,1,

for,1,,,

1for,1,,1,

,,,,,,
2/1

2/1

2/1

00

ljmslljnEE

ljmsljnE

ljmslljnE

EmljnVSaE nl
y

ncr
                  (42)

On the other hand, it is evident to consider the quantum number 

m  takes ( 12 l ) values and we have also two values 

for llj ,1 , thus every state in usually three-dimensional 

space of energy for bosonic particles with 1


S  under MCIQP 

will become double  123 l sub-states. To obtain the total 

complete degeneracy of energy level of the MUSVY potentials 

in (NC-3D: RSP) symmetries, we need to sum for all allowed 

values of l . Total degeneracy is thus, 
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It’s clear that the degeneracy of the initial spectral line is broken 
and it was replaced by a more precise and one. The doubled of 
the total complete degeneracy of energy level for bosonic 

particles with 1


S , in RNCQM symmetries under the 
MUSVY potentials gives a clear physical indicator by showing 
that the physical treatment with RNCQM appear more detailed 
and clear if compared with similar energy levels obtained in 
ordinary relativistic quantum mechanics. In order to consider 
further the interpretation of the positive and negative energy 
solutions of the modified Klein-Gordon equation one can 
consider the nonrelativistic limit. For this purpose, we apply the 
following transformations: 
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Here   is the reduced mass of the electron e and the atom Ze 

and  mljnVSaE y

ncnr
,,,,,, 00

is the non-relativistic energy, 

inserting above transformation into Eqn. (40) yields: 
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Where the first term in Eqn. (45) is the nonrelativistic energy 

determined by [3]. In the non-relativistic study, Eqn. (42) 

applies to hydrogen like atoms such as He , Be  and 2Li , 

we have 2/12/1  ljl , allows us to obtain two 

values of j  ( 2/1 lj ) that gives  

      1,
2

1
, 21  lllklk  and thus, we obtain two values 

of the energy shift  msljnEnr ,,,,  as follows: 
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The above results of the degenerate energy shift and Eqn. (43) 
gives the nonrelativistic energy 

 mslljnVSaEy

ncnr
,2/1,,2/1,,,, 00 


 of a fermionic particle 

with 2/1S


under the MUSVY potentials as follows: 
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(47) 

Let us now look the special cases , when 0a , 2
0 ZeV   

and 00 S , which give the effective Colombian  potential in 

noncommutative space  0,,0, 0
2

0  SZeVarV col
pert  

and the corresponding like radial Schrödinger equation which 
is compatible with the results of  reference [27]: 
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 (48) 

Regarding obtained results in Eqs. (38) and (39), the energy shift 
are depended on the spin non zero, one can deduce that the 
modified Klein-Gordon which is treated in our paper under 
MUSVY potentials can be prolonged to describe not only spin-
zero particles, but particles with spin 1 for example. Thus one 
can conclude that the MKG become similar to the Duffin–
Kemmer equation. This, however, points towards the 
nonrelativistic energy spectrum for the unequal mixture scalar 
and vector Yukawa potentials in the in (RNC: 3D-RS) 

symmetries. If we consider    0,0,   , we recover the 

results of commutative space of ref. [17] obtained for the 
MUSVY potentials, which means that our calculations are 
correct. 

4. Conclusion 

In this paper, we have investigated the MKGE for the MUSVY 
potentials in the non-commutative 3-dimensional spaces. The 

energy  mljnVSaEy

ncr
,,,0,,, 00 


, 
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 mljnVSaE y

ncr
,,,1,,, 00 


 and  mljnVSaE y

ncr
,,,,,, 00

 

corresponding to the ground state, the first excited state and thn  

excited state as a function of the shift energy  msljnE ,,,,  

and nE  due to the noncommutativity property is obtained via 

first-order perturbation theory and expressed by the Gamma 

function, the discreet atomic quantum numbers  mslj ,,,  and the 

potential parameters ( a , 0V and 0S ), in addition to non-

commutativity parameters ( and ). This behavior is similar 
to the Zeeman effect and spin-orbit coupling in which a 
magnetic field is applied to the system and the spin-orbital 

couplings which are induced with the effect   rV yp

pert
 in (RNC: 

3D-RS) symmetries. Therefore, we can conclude that the MKGE 
becomes similar to the Duffin–Kemmer equation under MUSVY 
potentials. It describes the dynamical state of a particle with spin 
one in the symmetries of RNCQM. We have seen that the 
physical treatment of MKGE under the MUSVY potentials for 

bosonic particles with 1


S  gives a very clear physical 
indication by showing that physical treatments with RNCQM 
appear more detailed and clear if compared with similar energy 
levels obtained in ordinary relativistic quantum mechanics. 
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