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Relativistic theory has been successful in describing nuclear phenomena. Therefore, this article investigated shell and cluster models in a 

relativistic manner. In this regards, considering appropriate potential for a few-body system by Jacobean coordinate, Klein-Gordon 

equation was solved by Nikiforov-Uvarov method. Then ground state energy and the first excited state of several light nuclei were 

calculated and compared with experimental values, which showed the efficiency of this model for investigation of energy levels of 

different nuclei. 

 

1. Introduction 

There is no complete theory which describes the structure 

and behavior of complex nuclei. Conceptual models 

however have been designed for understanding the 

physics of such inherently complex states. These models 

involve certain aspects of our understanding and simplify 

the calculations by simple assumptions. One of the 

simplest nuclear models is the liquid droplet model, in 

which the nucleus is regarded as a series of neutrons and 

protons gathered as an incompressible droplet [1]. 

Failures of this model resulted in development of shell 

model in which most of the nucleons form a neutral 

central part, and only a few of them can be found outside 

this central region producing low-energy excited states.  

    This model managed to predict a large range of nuclear 

observables such as spin and parity, for nuclear levels. In 

fact, the structure of atomic nuclei is described as energy 

levels which follow the exclusion principle of Pauli. This 

theory is based on this principle that each nucleon moves 

independently in the average potential due to the 

interaction of other nucleons in the nucleus. [2, 3] This 

requires that light nuclei with a half-filled shell appear as 

elliptical nuclei [4]. Deformation of light nuclei is not 

only observed in axial deviations, but it also creates a 

cluster structure. It should be noted that in most nuclei, 

there is no cluster structure in the ground state and it 

appears by increase of nuclear internal energy. 

Accordingly, some combinations of nucleons exist in the 

nucleus and interact with each other while maintaining 

themselves. The merits of examining the nuclear structure 

with cluster model will be highlighted when the relative 

motion between the clusters becomes the main state of the 

nucleus. 

    There is an extreme for clustering behavior for A = 4n 

nuclei, in which the whole nucleus does not behave like a 

liquid droplet, but it rather acts as a condensation of n 

individual alpha-like droplets [5, 6], when excessive 

excitement energy is added to these nuclei, the 

configuration of their central mass may be separated and 

expanded in space. Limiting cases are linear chain states 

which were predicted in a wide range of masses [7]. 

    To examine the nuclei in each of these nuclear models, 

we will encounter with a many-body system. One of the 

methods widely used for investigation of such systems is 

application of phenomenological potentials. In this 

method, appropriate potential with several parameters will 

be considered for the interactions between particles of a 

system. Then, by examining the experimental results, the 

parameters will be chosen in such a way that the greatest 

agreement could be achieved between the theory and the 

experimental results [8, 9].  
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    Over the past three decades, relativistic theory has been 

successful in describing nuclear phenomena of unstable 

nuclei as well as stable ones. In comparison with non-

relativistic theories, relativistic theory can reproduce real 

properties of nuclear saturation in a nuclear material. The 

main feature of the relativistic nuclear dynamics is the 

emergence of scalar gravity fields of S and vector 

repulsion of V which provide the ability to simultaneously 

unify the attractive and repulsive effects of long and short 

distances in nuclear interactions, and reflect the 

possibility to use relativistic nuclear dynamics for further 

modifications in the nuclei structure [10-13]. In this 

context, the present paper investigated the shell and 

cluster models by relativistic methods considering a 

proper central potential. By solving the Klein-Gordon 

equation by Nikiforov-Uvarov method and obtaining the 

Eigenvalue equations of energy, we examine the efficacy 

of our model through comparing experimental and 

computational results for several isotopes. 

2. Review of Nikiforov-Uvarov Method 

Klein-Gordon equation was converted to following from 

after selecting proper variable of s=s(r) [14]. 

2

( ) ( )
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Where, ( )s and ( )s  are polynomials of at most second order and ( )s  is a polynomial which can be first order at 

most. Considering ( )n s as a multiplication

: 

( ) ( ) ( )n n ns s y s 
                                     (2) 

Equation 1 can be reduced to a hyper-geometrical equation as: 

                                                                                           

( ) ( ) ( ) ( ) ( ) 0   n n ns y s s y s y s                                                                     (3) 

In which ( ) ( ) 2 ( )s s s    , and ( ) 0s   should also hold. This means that first derivative of ( )s   should be 

negative.   is a parameter defined as follows and setting the equations in 4 equal results in energy Eigen values :    
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It must be mentioned that   and n  will be obtained 

from a specific solution, ( ) ( ) ny s y s , obtained from a 

n-order polynomial. Moreover, the term ( )ny s  is the 

wave function of equation 2 which is a hypergeometric 

function obtained from Rodriguez equation 

( ) ( ( ) ( )) nn
n n

n

B d
y s s s

ds
 


                                                                   (5) 

In this equation, Bn is normalization constant and ( )s  is a weight function which satisfies the following condition:  

( )
( ) ( ) ( ) ( ) ( )

( )
 

d s
s s s s s

ds s


    


                                 (6) 

( )s   is defined as: 

2
( ) ( ) ( ) ( )

( ) ( ) ( )
2 2

   
    

 

s s s s
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   
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    As should be a first order polynomial at most, term 

underneath the radical in equation 7 should be set as first 

order polynomial. In this way, 2 4b ac   can be 

equal to zero. In such cases, an equation will be obtained 

for K whose values can be substituted in equation 7. 

Comparing it with equation 4, energy eigenvalues will be 

obtained. 

3. The Klein–Gordon Equation in (D+1) 

Dimensions  

The D-dimensional time-independent arbitrary l-states 

radial Klein-Gordon equation with scalar and vector 

potentials S(r) and V(r), where r=|r| is describing a spin-

less particle (such as α particle), takes the general form 

[15, 16]:  
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We define a set of Jacobi coordinates for which ζN=rij. The center of mass R can be eliminated by using the Jacobi 

coordinates: 
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The N-body problem in the center-of-mass frame is 

mathematically (3N-3) - dimensional. In the hyper-

spherical method, a point in the (D=3N-3)-dimensional 

configuration space is represented as lying on a (D-1)-

dimensional hyper-sphere of radius x [17]. In addition, x 

is a D-dimensional position vector in Jacobi coordinates. 

    The Laplace operator written in hyper-spherical 

coordinates in the D-dimensional space for N identical 

particles becomes [18-20] 

 221 1
2 2

2 2
1 1

1 

 
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 
 i

N N

x

i i

Ld D d

dx x dx x
                                   (11) 

Applying the separation variable method by means of the solution, 

     ,  m

n m D n Dx U x Y                                                                  (12) 

Eq. (12) provides two separate equations, Where  m

DY  is known as the hyper-spherical harmonics. 

       2 2     m m

D DL Y D Y                                                (13) 

    In the case that the scalar and vector potential have equal magnitudes, V(x) = S(x) by Jacobi relative considerations, the 

time-independent hyper-radial Schrödinger-like equation in D-dimensions [21] becomes: 

     
   

2 2 4 22

2 2 2 2 2 2

21
2 0
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     

  
n

E M c E McDd D d
V x U x

x dxdx x c c
       (14) 

The quadratic Hellmann potential is defined as [22, 23]: 

x

2

a b
V(x) e

x x

                                                                                  (15) 

Where, the parameters a and b are real parameters, these 

are strength parameters, and the parameter α is related to 

the range of the potential.  

Equation (14) is exactly solvable only for the case of Ɩ=0. 

In order to obtain the analytical solutions of Eq. (14), we 

employ the improved Pekeris approximation [24] that is 

valid for
xe

. The main characteristic of these solutions 

lies in the substitution of the centrifugal term by an 

approximation, so that one can obtain an equation, 

normally hypergeometric, which is solvable [25, 26]. 

2

2 x 2

1

x (e 1)





                                                                     (16) 

Also this approximation in reverse order could be used. 
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We can write the Eq. (14) by using improved Pekeris approximation as summarized below: 

 
 

   2

n, n, 2 1 0 n,2

D 1 1
U x U x s s U x 0

x x


                               (17) 

Where the parameters η2, η1 and η0 are considered as follows: 
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Applying NU method, we obtain the energy equation as: 

 
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Finally, considering the notations of Eqns. (18) and (19), the equation of energy can be obtained as: 
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And the hyper-radial wave function can be written in the bellow form: 

     

 
2 2

0 0
2

2 D 2 D 2 D
2

x2 4 4
n, n 2U (x) Nx e L 2 x

  
  

 
                                           (21) 

Where, N is the normalization constant. 

 

4. Result and Discussion in Shell Model 

We investigate a systematic study of both nuclear 

binding energies and excited energies in (even) oxygen 

isotopes 18O and 20O. We have investigated energy levels 

these isotopes in Relativistic Shell model. These isotopes 

can be considered as a doubly-magic close shell 16O with 

additional nucleons (valence) in the ld5/2 level. Then, 

using the Jacobi coordinate transformation in hyper-

spherical approach, the relativistic Klein–Gordon 

equations under spin symmetry in D-dimensional are 
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investigated for quadratic Hellmann potential for 

interaction between core and additional nucleons. Using 

Parametric Nikiforov-Uvarov method, we have 

calculated the energy levels and wave function in Kline-

Gordon equation in relativistic shell model. Finally, we 

have computed the binding and excited energy levels for 

these isotopes and compare with other works. Our results 

were in agreement with experimental values and hence 

this model could be applied for similar nuclei. 

    We consider (even) oxygen isotopes 18O and 20O as a 

doubly-magic close shell 16O with additional nucleons 

(valence) in the ld5/2 level. We have investigated energy 

levels these isotopes in Relativistic Shell model. Then, 

using the Jacobi coordinate transformation in hyper-

spherical approach and Parametric Nikiforov-Uvarov 

method, we have calculated the energy levels and wave 

function in Kline-Gordon equation in relativistic shell 

model. Relativistic mean field (RMF) theory, as a 

covariant density functional theory, has been successfully 

applied to the study of nuclear structure properties [27]. 

Therefore, it is interesting to apply RMF theory to 

investigate the binding energy difference of mirror nuclei 

[28]. So we could use of K-G equation for investigation 

them. The ground state and first excited energies of 

(even) oxygen isotopes 18O, 20O are obtained in 

relativistic shell model by using Eq. (20). These results 

for relativistic shell model are compared with the 

experimental data and others work in table 1.  

 

 

 

 

 

 

 

 

 

 

Table 1 

The ground state and the first excited energy of (even) oxygen isotopes 18O and 20O in Relativistic shell model 

(with α=0.012fm-1).  

  

 

 

The calculated energy levels have good agreement with 

experimental values. Therefore, the proposed model can 

well be used to investigate other similar isotopes and 

compare with experimental data. 

 

In [31], we have investigated the ground state energy of 

oxygen isotopes by Hult'en plus Yukawa potential as 

interaction between particles in Non-Relativistic system 

[31]. In this work, we have obtained better agreement 

with experimental values comparing pervious paper. 

 

Isotope 
a b 

 

state 

 

E-Our(MeV) 

E-Other(MeV)[29] 

 

EExp(MeV) 

[30] 

NL3 NL-Z2 NL-BA  
 

18O 
127.3849 1.3487 

(0+)1 -139.8993 141.101 140.643 139.909 139.8087 

(2+)1 -137.9258 - - - 137.8266 
 

20O 
142.4517 3.6049 

(0+)1 -151.3033 152.300 152.161 151.247 151.3714 

(2+)1 -149.6265 - - - 149.6977 
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5. Result and Discussion in Cluster Model   

Regarding relatively good agreement between the 

computed and experimental energy levels in shell model, 

in this section we investigated the relativistic cluster 

model with quadratic Hellman potential and examined 

the results for ground and first excited state of some light 

alpha-conjugated nuclei.  

8Be isotope is the simplest system for investigating this 

model; this isotope includes two alpha particles. Ikida 

diagram predicts that the cluster structure can be 

observed in the threshold of decay or a little lower. 

Regarding low half- life of this isotope (~ 10-16 s), alpha 

structure cluster can be seen in ground state.  

The binding energy of 8Be isotope is -57/75 MeV, and its 

ground state level decays into two alpha particles by 

receiving 92keV energy; its first excited level, +2, also 

has the energy of -53.27 MeV. Now, using equation (20) 

and selecting the most suitable potential coefficients, we 

calculated the amount of ground state energy and the first 

excited level of this isotope, which was compared with 

experimental values in Table 2. 

The next examined systems that were 12C and 16O 

isotopes. In Hoyle's excited equilibrium, 2+, 12C has a 

cluster structure consisting of three alpha particles. 16O 

isotope has 8 protons and 8 neutrons; and according to 

the shell model, it has two 1P 1/2 packets and two magic 

pockets. Ikida's diagram predicts that 16O isotope has 

two-cluster structure of 12C + α at energy of -120/46 

MeV and four-alpha clusters at 183.11 MeV [5], [6]. 

Experimental results also confirmed Ikida's prediction. 

When the excitement energy of nucleus reaches to -

184.19 MeV, it gets 3-cluster structure and eventually at 

-169.76MeV, it will have a structure consisting of six 

alpha particles. Now, after determining the coefficients 

by fitting on the clustered system, the calculated results 

for the ground state and the first excited level of all 

isotopes are listed in Table 2.

   

Table2 

The ground state and the first excited energy for A=4n isotopes in Relativistic cluster model (with α=0.012fm-1). 

 

 

Isotope 

 

state 

 

E-Our(MeV) 

E-Other(MeV)[29]  

E-Exp.(MeV)[30] NL3 NL-Z2 NL-BA 

 

8Be 

(0+)1 -139.8993 141.101 140.643 139.909 139.8087 

(2+)1 -137.9258 - - - 137.8266 

 

12C 

(0+)1 -151.3033 152.300 152.161 151.247 151.3714 

(2+)1 -149.6265 - - - 149.6977 

 

16O 

(0+)1 -162.1292 163.173 163.082 162.159 162.0300 

(2+)1 -158.9363 - - - 158.8310 
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     As tables 1 and 2 suggest, relativistic shell model was 

successful in investigation of isotopes possessing a 

central nucleus and extra nucleons acting as valance 

nucleons. It can be also used for other isotopes. 

Moreover, relativistic cluster model is the most suitable 

one for isotopes with A=4n in which n shows the number 

of alpha particles 
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