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Abstract: A bulk viscous magnetized locally rotationally symmetric (LRS) Bianchi type I cosmological model has been 

studied in general relativity. To find exact solutions of Einstein’s field equations we use modified holographic ricci dark 

energy density in presence of bulk viscosity and magnetic field. The coefficient of bulk viscosity 𝜁 is taken as a quadratic 

function of Hubble parameter 𝐻 which is of the form 𝜁 = 𝜁0 + 𝜁1𝐻 + 𝜁2𝐻2 where 𝜁0, 𝜁1 and 𝜁2 are constants. Also, we have 

considered hybrid expansion law to find the solutions. The physical and geometrical aspects of the cosmological model have 

been discussed and it is found that the results are in good agreement with the present-day observational facts. 

 

1. Introduction 

Supernova observations (SN Ia) established the fact 

that the expansion of the universe [1-3] is caused 

by a kind of an exotic energy called dark energy 

(DE) with large negative pressure. Planck 

cosmological results [4] and WMAP measurements 

conclude that the universe consists of about dark 

energy 68.3%, dark matter 26.8% of the total 

energy of the universe and the rest 4.9% energy is 

baryonic matter. In modern cosmology, the dark 

energy plays an important role to establish the 

concept of accelerating universe. But the nature of 

dark energy is still unknown and is a mystery and 

researchers have suggested some candidates to 

describe it. The cosmological constant 𝛬 satisfying 

the equation of state 𝜔 = −1 is the simplest 

candidate for dark energy. But it has the problems 

of ‘fine-tuning’ and ‘cosmic coincidence’. Other 

candidates for dark energy are suggested viz. 

quintessence, phantom, quintom, tachyon, k-

essence, dilation, holographic, pilgrim dark energy 

etc. Considerable research works have been done 

and many different models related to dark energy 

have been suggested [5, 6].  

The study of holographic dark energy (HDE) 

model now-a-days becomes important to describe 

the phase transition of the universe. The HDE is 

based on holographic principle [7, 8]. The 

holographic principle was first proposed by `t 

Hooft [7]. It occupies an important role in black 

hole and string theory. According to this principle, 

the entropy of the system scales not with its 

volume, but also its surface area (𝐿2). The energy 

density of Holographic DE is 𝜌𝑑𝑒 =

3𝑐2𝑀𝑝𝑙
2 𝐿−2where 𝐿 is the infrared (IR) cut off 

radius, 𝑀𝑝𝑙
2 = 1/8𝜋𝐺 is the Planck mass and `𝑐` is 

constant [9]. Gao et al. [10] suggested that the dark 

energy density may be inversely proportional to the 

area of the event horizon of the Universe. In this 

model the future event horizon is replaced by the 

inverse of the Ricci scalar curvature. This model is 

known as Ricci Dark Energy model. Granda et al. 

[11, 12] proposed a MRDE model where the 

density of DE is a function of Hubble parameter 

𝐻and its derivative with respect to cosmic time 𝑡. 

The mathematical expression of this model is 

𝜌𝑑𝑒 = 3𝑀𝑝𝑙
2 (𝜂1𝐻2 + 𝜂2�̇�). Chen and Jing [13] 

later modified this model where the density of DE 

contains the second order derivative of 𝐻 with 

respect to 𝑡. The mathematical expression is 𝜌𝐻 =

3𝑀𝑝𝑙
2 (𝜂1𝐻2 + 𝜂2�̇� + 𝜂3�̈�𝐻−1).  

The distribution of galaxies in the universe is 

described by the matter distribution governed by 

perfect fluid. The decoupling of neutrinos during 

the radiation era and the separation of radiation and 

matter during the recombination era, give rise to 

viscous effects. Weinberg [14] presented the role of 

viscosity in cosmology. The coefficient of viscosity 

is known to decrease as the universe expands. 

Misner [15, 16] investigated the effect of viscosity 

during the evolution of the universe. Padmanabhan 

and Chitre [17] found that the presence of bulk 

viscosity leads to inflationary-like solutions in 

general relativity. The concept of bulk viscosity 𝜍 

introduces dissipation by only redefining the 

effective pressure �̄� where �̄� = 𝑝 − 3𝜁𝐻. The 
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coefficient of bulk viscosity 𝜁 is taken to be 

quadratic function of Hubble parameter 𝐻 [17] as 

𝜁 = 𝜁0 + 𝜁1𝐻 + 𝜁2𝐻2. The existence of magnetic 

field in galactic and intergalactic space plays a very 

important role and anisotropic magnetic field 

models have contributions in the evolution of 

galaxies and stellar objects.  Zeldovich et al. [18], 

Harrison [19] investigated the magnetic field in 

various cosmological models. Asseo and Sol [20] 

and Madsen [21] have discussed the primordial 

magnetic fields. Melvin [22] suggested, in the 

cosmological solution for dust and electromagnetic 

fields during the evolution of the universe the 

matter was in highly ionized state and smoothly 

coupled with electromagnetic and consequently 

formed a neutral matter as a result of expansion of 

the universe. Singh and Singh [23] have discussed 

the nature of the classical potential for viscous fluid 

with and without magnetic field. Das and Sultana 

[24] studied magnetized anisotropic ghost dark 

energy cosmological models in General Relativity.  

The magnetized dark energy responsible for the 

present-day accelerating phase of the universe has 

been observed by Yadav et al. [25]. Recently Singh 

et al. [26] have presented a viscous cosmological 

model in MHRDE where it is observed that the 

bulk viscosity acts very significant position in the 

expansion history of the universe. In this paper our 

aim is to investigate the nature of viscous 

anisotropic modified holographic dark energy 

model in presence of magnetic field.  

The paper is organised as follows: In Section 2, the 

relevant field equation with MHRDE viscous 

cosmological model in GR is presented. In, Section 

3, isotropization and solution of field equations are 

obtained. In Section 4, the graphical discussions of 

the various parameters verses cosmic time 𝑡 is 

presented. In Section 5, a brief conclusion is given. 

2. The Metric and Field Equations 

We consider the homogenous and anisotropic 

space-time described by Bianchi type I in the 

metric form as 

𝑑𝑠2 = 𝑑𝑡2 − 𝑃2𝑑𝑥2 − 𝑄2(𝑑𝑦2 + 𝑑𝑧2)                

(1)                                                                                    

where 𝑃and 𝑄are functions of cosmic time 𝑡 only. 

The Einstein`s field equations with magnetic field 

are 

𝑅𝑖𝑗 −
1

2
𝑔𝑖𝑗𝑅 = −(𝑇𝑖𝑗 + �̄�𝑖𝑗)                                   

(2)                                                                                                           

Where, 𝑅𝑖𝑗 is the Ricci tensor, 𝑅 is the Ricci scalar 

and 𝑇𝑖𝑗and �̄�𝑖𝑗 are the energy momentum tensors 

for matter and MHRDE respectively. 

The energy momentum tensor for matter is 

𝑇𝑖
𝑗 = 𝑑𝑖𝑎𝑔[𝜌, 0,0,0]                                                

(3)                                                                                                                                 

where 𝜌 is the energy density of matter. 

The energy momentum tensor for MHRDE is as 

follows: 

�̄�𝑖
𝑗 = 𝑑𝑖𝑎𝑔 [𝜌𝐻 + 𝜌𝐵 , −�̄�𝐻𝑥

+ 𝜌𝐵 , −�̄�𝐻𝑦
−

𝜌𝐵 , −�̄�𝐻𝑧
− 𝜌𝐵]                                                        

(4)  

where 𝜌𝐻 is the energy density of MHRDE, 

�̄�𝐻𝑥
, �̄�𝐻𝑦

and �̄�𝐻𝑧
are the effective pressures in the 

directions of 𝑥, 𝑦 and 𝑧 axes respectively and 𝜔𝑥 =

𝜔𝐻 , 𝜔𝑦 = 𝜔𝐻 + 𝛿 and 𝜔𝑧 = 𝜔𝐻 + 𝛿 are the 

directional EOS parameters of the MHRDE on 𝑥, 𝑦 

and 𝑧 axes respectively and 𝜌𝐵 stands for the 

energy density of magnetic field 𝐵. The skewness 

parameter 𝛿 is the deviations from 𝜔𝐻 in the 

directions of 𝑦 and 𝑧. Here 𝜔𝐻 and 𝛿 need not be 

constants and can be functions of cosmic time 𝑡 

only.  

King & Coles [27] used the magnetic perfect fluid 

energy–momentum tensor to discuss the effects of 

magnetic flux on the evolution of the Universe. 

Jacobs [28] studied the impact of a regular, early 

magnetic flux on Bianchi type-I cosmological 

model. We assume that the universe is filled with 

matter and magnetized modified holographic ricci 

dark energy fluid. A cosmological model which 

contains a global magnetic field is necessarily 

anisotropic since the magnetic field vector specifies 

a preferred spatial direction. In this paper, we 

considered the electromagnetic field along x-axis 

(𝐵 = 𝐵𝑥) only.                                                                                                                                       

The Einstein`s field equation (2) for the space-time 

(1) takes the form 

2
�̇��̇�

𝑃𝑄
+

�̇�2

𝑄2 = 𝜌 + 𝜌𝐻 + 𝜌𝐵                                        

(5)                                                                                                              
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2
�̈�

𝑄
+

�̇�2

𝑄2 = −𝜔𝐻𝜌𝐻 + 𝜌𝐵 + 3𝐻𝜁                             

(6)                                                                                                        

�̈�

𝑃
+

�̈�

𝑄
+

�̇��̇�

𝑃𝑄
= −(𝜔𝐻 + 𝛿)𝜌𝐻 − 𝜌𝐵 + 3𝐻𝜁             

(7)                                                                                                          

The energy conservation equation (𝑇𝑖𝑗 + �̄�𝑖𝑗);𝑗 =

0 can be obtained as   

 �̇� + (
�̇�

𝑃
+ 2

�̇�

𝑄
) (𝜌 − 3𝐻𝜁) + �̇�𝐻 + (1 +

 𝜔𝐻)𝜌𝐻 (
�̇�

𝑃
+

2�̇�

𝑄
) + 2

�̇�

𝑄
𝛿𝜌𝐻 = 0                                  

(8)                    

𝜌𝐵 =
𝐼

𝑄4                                                                  

(9)                                                                                                               

Where, 𝐼 is a constant. 

Where, an overhead dot (. ) denote differentiation 

w.r.to cosmic time 𝑡. 

 3. Solutions of Field Equations 

The spatial volume 𝑉 is defined as  

𝑅3 = 𝑉 = 𝑃𝑄2                                                          

(10)                                                                                                                   

Where. 𝑅 is the average scale factor. 

The average Hubble parameter 𝐻 is defined as 

𝐻 =
�̇�

3𝑉
=

1

3
(

�̇�

𝑃
+

2�̇�

𝑄
) =

1

3
(𝐻𝑥 + 2𝐻𝑦)                   

(11)     

where 𝐻𝑥 =
�̇�

𝑃
 and 𝐻𝑦 = 𝐻𝑧 =

�̇�

𝑄
 are the directional 

Hubble parameters in the 𝑥, 𝑦 and 𝑧 axes 

respectively. 

The deceleration parameter 𝑞 is defined as 

𝑞 = −
𝑅�̈�

�̇�2                                                                  

(12)                                                                                                                              

Equations (5)-(8) are four field equations with 

seven unknowns 𝑃, 𝑄, 𝜌, 𝜌𝐻 , 𝜔𝐻 , 𝜁, and 𝛿. So, in 

order to solve them completely, we need the 

following three extra relations: 

(i) Chen and Jing [13] suggested the MHRDE 

density as 

     𝜌𝐻 = 3(𝜂1𝐻2 + 𝜂2�̇� + 𝜂3�̈�𝐻−1)                   

(13)                                                                  

Where, 𝜂1, 𝜂2 and 𝜂3 are constants and 𝑀𝑝𝑙
2 =

8𝜋𝐺 = 1. 

(ii)  Akarsu et al. [29] proposed the average 

scale factor 𝑅(𝑡) as a mixture of power law and 

exponential law as 

      𝑅(𝑡) = 𝑅0𝑡ℎ1𝑒ℎ2𝑡                                         (14)                                                                                                       

where ℎ1and ℎ2 are non-negative constants and 𝑅0 

represents the present value of scale factor.  

The relation (14) yields an exponential law when 

ℎ1 = 0 and the power law when ℎ2 = 0. The 

relation (14) is a mixture of power and exponential 

law which is usually called Hybrid Expansion Law 

(HEL). 

(iii) The bulk viscosity 𝜁 according to [17] is 

assumed as  

𝜁 = 𝜁0 + 𝜁1𝐻 + 𝜁2𝐻2       (15)               

Where, 𝜁0, 𝜁1and 𝜁2 are constants and 𝐻is the 

Hubble parameter. 

Equations (6) and (7) yield 

�̇�

𝑷
−

�̇�

𝑸
=

𝒄𝟏

𝑽
𝒆

− ∫

𝜹𝝆𝑯+
𝟐𝑰

𝑸𝟒

�̇�
𝑷−

�̇�
𝑸

𝒅𝒕

                                           

(16)                                                                                            

 Where, 𝑐1 is a constant of integration. 

To solve the Equation (16), we take (according to 

Adhav [30]) 

𝛿𝜌𝐻 +
2𝐼

𝑄4 =
�̇�

𝑃
−

�̇�

𝑄
                                                 

(17)                                                                                                               

Using Equation (17), Equation (16) takes the form 

�̇�

𝑃
−

�̇�

𝑄
=

𝑐1

𝑉
𝑒−𝑡                                                       

(18)                                                                                                                  

Using Equations (10) and (14) in Equation (18), we 

get           

 
�̇�

𝑃
−

�̇�

𝑄
=

𝑐1

𝑅0
3𝑡3ℎ1𝑒ℎ3𝑡                                               

(19)                                                                                                                 

Where, ℎ3 = 1 + 3ℎ2 = constant. 

Integrating Equation (19), we get 
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𝑃 = 𝑄𝑐2 𝑒𝑥𝑝 [
𝑐1

𝑅0
3 ∫

𝑑𝑡

𝑡3ℎ1𝑒ℎ3𝑡]                                   

(20)                                                                                           

where 𝑐2 is a constant of integration. 

Equation (10), on using equation (14) gives the 

spatial volume 𝑉of the model as 

𝑅3 = 𝑉 = 𝑃𝑄2 = 𝑅0
3𝑡3ℎ1𝑒3ℎ2𝑡                               

(21)                                                                                                      

Equations (20) and (21) yield 

𝑄 =
𝑅0𝑡ℎ1𝑒ℎ2𝑡

𝑐2

1
3[𝑒𝑥𝑝{

𝑐1

𝑅0
3 ∫

𝑑𝑡

𝑡3ℎ1𝑒ℎ3𝑡}]

1
3⁄
               (22) 

    

𝑃 =
𝑅0𝑡ℎ1𝑒ℎ2𝑡

𝑐2
−

2
3[𝑒𝑥𝑝{

𝑐1

𝑅0
3 ∫

𝑑𝑡

𝑡3ℎ1𝑒ℎ3𝑡}]

−
2
3

                                 

(23)                                                                                       

The expressions for directional Hubble parameters, 

Hubble parameter and Deceleration parameter are 

given by 

𝐻𝑥 =
�̇�

𝑃
=

ℎ1

𝑡
+ ℎ2 +

2

3

𝑐1

𝑅0
3 𝑡−3ℎ1𝑒−ℎ3𝑡                     

(24)                                                                                          

𝐻𝑦 = 𝐻𝑧 =
�̇�

𝑄
=

ℎ1

𝑡
+ ℎ2 −

1

3

𝑐1

𝑅0
3 𝑡−3ℎ1𝑒−ℎ3𝑡           

(25)                                                                                       

𝐻 =
ℎ1

𝑡
+ ℎ2                                                         

(26)                                                                                                     

𝑞 = −1 +
ℎ1

(ℎ1+ℎ2𝑡)2                                               

(27)     

Equation (8) yields the conservation equation for 

matter and MHRDE as 

  �̇� + (
�̇�

𝑃
+ 2

�̇�

𝑄
) 𝜌 = 9𝐻2𝜁                                    

(28)                                                                                                

�̇�𝐻 + (1 + 𝜔𝐻)𝜌𝐻 (
�̇�

𝑃
+ 2

�̇�

𝑄
) + 2

�̇�

𝑄
𝛿𝜌𝐻 = 0        

(29)                                                                                         

Equation (28) implies �̇� + 3𝐻𝜌 = 9𝐻2𝜁     

𝜌 = 9𝑡−3ℎ1𝑒−3ℎ2𝑡 ∫ 𝑡3ℎ1𝑒3ℎ2𝑡 [𝜍0 (
ℎ1

𝑡
+ ℎ2)

2

+

𝜍1 (
ℎ1

𝑡
+ ℎ2)

3

+ 𝜍2 (
ℎ1

𝑡
+ ℎ2)

4

] 𝑑𝑡 + 𝑐3𝑡−3ℎ1𝑒−3ℎ2𝑡          

                                                                            (30)       

where 𝑐3 is an integrating constant.     

 Equation (13) and Equation (26) yield the density 

(MHRDE) as                                              

𝜌𝐻 = 3𝑡−2[𝜂1(ℎ1 + ℎ2𝑡)2 − ℎ1𝜂2 + 2ℎ1𝜂3(ℎ1 +

ℎ2𝑡)−1]                                                                                    

(31) 

The skewness parameter 𝛿 is obtained from 

equation (17) with the use of equations (24) and 

(25) as  

𝛿𝜌𝐻 =
𝑐1

𝑅0
3𝑡3ℎ1𝑒ℎ3𝑡 −

2𝐼

𝑄4                                            

(32)                                                                                                                     

Equation (29) with the use of Equations (24), (25) 

and (32) yield the expression for 𝜔𝐻 as  

3𝐻𝜔𝐻𝜌𝐻 =
6𝜂1ℎ1

𝑡2 (
ℎ1

𝑡
+ ℎ2) −

6ℎ1𝜂2

𝑡3 +

6ℎ1𝜂3(2𝑡ℎ1+3𝑡2ℎ2)

𝑡6(
ℎ1
𝑡

+ℎ2)
2 − 3𝐻𝜌𝐻 −

2�̇�

𝑄
(

𝑐1

𝑅0
3𝑡3ℎ1𝑒ℎ3𝑡 −

2𝐼

𝑄4)     

                                                                            (33) 

The anisotropy parameter 𝐴𝑛 is given by 

𝐴𝑛 =
1

3
∑ (

𝐻𝑖−𝐻

𝐻
)3

𝑖=1

2

 

=
2𝑐1

2

9𝐻2𝑅0
6 𝑡−6ℎ1𝑒−2ℎ3𝑡                                               

(34)                                                                                                                  

The co-efficient of bulk viscosity 𝜁is taken as 

𝜁 = 𝜁0 + 𝜁1𝐻 + 𝜁2𝐻2 

     = 𝜁0 + 𝜁1 (
ℎ1

𝑡
+ ℎ2) + 𝜁2 (

ℎ1

𝑡
+ ℎ2)

2

                

(35)   

The matter energy density Ω and the MHRDE 

density ΩH are defined as 

Ω =
𝜌

3𝐻2  , Ω𝐻 =
𝜌𝐻

3𝐻2                                              

(36) 

The total energy density parameter Ω𝑇 is defined as 

Ω𝑇 = Ω + Ω𝐻 = (𝜌 + 𝜌𝐻)/3𝐻2                          

(37)                                                                                                              

The energy density for magnetic field is obtained as 

ρB =
I

Q4 = I
R0

−4t−4h1e−4h2t

c2

−4
3 {exp[

c1

R0
3 ∫

dt

t3h1eh3t]}

−4
3

                        

(38)     
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 3.1 Cosmic jerk parameter 

 Cosmic jerk parameter is defined as the third order 

derivative of the average scale factor w.r.to the 

cosmic time. It is according to reference [31] given 

by  

𝑗(𝑡) =
1

𝐻3

𝑅

𝑅
= 𝑞 + 2𝑞2 −

�̇�

𝐻
                                     

(39)                                                                                                        

Using Equations (26) and (27) in equation (39), we 

get the expression of cosmic jerk parameter as 

𝑗(𝑡) = 1 − 3ℎ1(ℎ1 + ℎ2𝑡)−2 + 2ℎ1
2(ℎ1 + ℎ2𝑡)−4 +

2ℎ1ℎ2𝑡

(ℎ1+ℎ2𝑡)4                                                    (40)          

The transition from the decelerating to the 

accelerating phase of the universe is due to a 

cosmic jerk parameter and it occurs for different 

models with a positive value of the jerk parameter 

and the negative value of the deceleration 

parameter [31-33]  

 

 

 

 

 

 

 

 

 

4. Graphical Discussions 

                                           

 

Fig.1: The figure shows the plot of 𝑃 verses cosmic 

time 𝑡 with 𝑅0 = 1, ℎ1 = 0.1, ℎ2 = 0.25, ℎ3 =

1.75, 𝑐2 = 0.001, 𝑐1 = 0.12.  

 

Fig.2: The figure shows the plot of 𝑄 verses cosmic 

time 𝑡 with 𝑅0 = 1, ℎ1 = 0.1, ℎ2 = 0.25, ℎ3 =

1.75, 𝑐2 = 0.001, 𝑐1 = 0.12.  

From Fig.1 and Fig.2, it is observed that 𝑃 and 𝑄 

increases with time. 

 

Fig.3: The figure shows the plot of 𝐻 verses cosmic 

time 𝑡 with ℎ1 = 0.1, ℎ2 = 0.25 

 From this figure it is seen that 𝐻 is a decreasing 

function of 𝑡 and vanishes for large values of 𝑡. 
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Fig.4: The figure shows the plot of 𝑞 verses cosmic 

time 𝑡 with ℎ1 = 0.1, ℎ2 = 0.25. From this figure it 

is seen that 𝑞 is a decreasing function of 𝑡 and tends 

to −1 for large values of 𝑡. Deceleration parameter 

(𝑞) is positive at early stage of the universe and is 

negative at later age of the universe. This implies 

that the universe undergoes transition from the 

decelerating to accelerating phase. 

 

Fig.5: The figure shows the plot of 𝜌 verses cosmic 

time 𝑡 with ℎ1 = 0.1, ℎ2 = 0.25, 𝜁0 = 0.01, 𝜁1 =

0.1, 𝜁2 = 0.001, 𝑐3 = 0.1. From this figure it is 

seen that 𝜌 is a decreasing function of 𝑡 and tends 

to zero at late times. 

 

Fig.6: The figure shows the plot of 𝜌𝐻 verses 

cosmic time 𝑡 with ℎ1 = 0.1, ℎ2 = 0.25, 𝜂1 =

1, 𝜂2 = 0.5, 𝜂3 = 0.4. From this figure it is seen 

that 𝜌𝐻 is a decreasing function of 𝑡 and tends to 

small value at late times. 

 

Fig.7: The figure shows the plot of 𝛿 verses cosmic 

time 𝑡 with. ℎ1 = 0.1, ℎ2 = 0.25, 𝜂1 = 1, 𝜂2 =

0.5, 𝜂3 = 0.4, 𝑅0 = 1, 𝑐1 = 0.12, 𝐼 = 1. From this 

figure it is seen that 𝛿 increases sharply at early 

stage of the universe and then decreases and 

ultimately tends to zero at late times. 

 

     

                         

  

 

 

Fig.8: The figure shows the plot of 𝐴𝑛 verses 

cosmic time 𝑡 with. ℎ1 = 0.1, ℎ2 = 0.25, ℎ3 =

1.75, 𝑅0 = 1, 𝑐1 = 0.12. From this figure it is seen 

that 𝐴𝑛 increases sharply at early stage of the 

universe and then decreases and ultimately tends to 

zero at late times. It is evident that at the late times 

the universe becomes isotropic.  
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Fig.9: The figure shows the plot of 𝜔𝐻 verses 

cosmic time 𝑡 with ℎ1 = 0.1, ℎ2 = 0.25, 𝜂1 =

1, 𝜂2 = 0.5, 𝜂3 = 0.4, 𝑅0 = 1, 𝑐1 = 0.12, 𝐼 = 1. 

From this figure it is seen that 𝜔𝐻 tends to −1 at 

late times and it behaves like a cosmological 

constant.   

 

 

 

 

 

 

 

Fig.10: The figure shows the plot of Ω𝑇 verses 

cosmic time 𝑡 with ℎ1 = 0.1, ℎ2 = 0.25, 𝜂1 =

1, 𝜂2 = 0.5, 𝜂3 = 0.4, 𝑐3 = 0.1. From this figure it 

is seen that as the universe expands, Ω𝑇 tends to 1 

at late times and thus the universe becomes 

spatially homogenous, isotropic and flat. 

 

Fig.11: The figure shows the plot of 𝑗 verses 

cosmic time 𝑡 with ℎ1 = 0.1, ℎ2 = 0.25. From this 

figure it is seen that 𝑗 tends to 1 at late times and is 

positive throughout the entire age of the universe. 

 

Fig.12: The figure shows the plot of 𝜌𝐵 verses 

cosmic time 𝑡 with 𝑅0 = 1, ℎ1 = 0.1, ℎ2 =

0.25, ℎ3 = 1.75, 𝑐2 = 0.001, 𝑐1 = 0.12.  

5. Conclusions 

The present paper deals with the study of LRS 

Bianchi type I universe with Anisotropic Modified 

Holographic Ricci Dark Energy (MHRDE) viscous 

cosmological model in presence of magnetic field. 

The exact solutions of the model are obtained by 

using: (i) MHRDE density proposed by Chen and 

Jing [13], (ii) the bulk viscosity 𝜁 is assumed to be 

of the form 𝜁 = 𝜁0 + 𝜁1𝐻 + 𝜁2𝐻2 , where 𝜁0, 𝜁1 

and 𝜁2 are constants and 𝐻is the Hubble parameter 

and (iii) Hybrid Expansion Law (HEL). The bulk 

viscosity which plays an important role in the early 

evolution of the universe ultimately decreases with 

time. For 𝜁0 = 𝜁1 = 𝜁2 = 0 in the expression of the 

bulk viscosity, we get perfect fluid models. We 

have seen that the magnetic field is effective at the 

early stages of the universe. Highly ionized matter 
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coupled with fields form neutral matter which 

causes the expansion of the universe during the 

evolution of the universe.  It is observed from the 

analysis of the figures presented in this paper that 

the anisotropy of the universe and the skewness 

parameter approaches to zero at later age of the 

universe. Thus, the universe becomes isotropy at 

later times. The EOS parameter approaches to -1 at 

late times and ultimately it behaves like a 

cosmological constant. Thus, the model satisfies all 

the physical and geometrical observations which 

are in good agreement with the present-day 

observations. 
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