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In this work, nonlinear propagation of dust-ion-acoustic waves in 3 component plasma with electrons and ions being 

degenerate in ultra-relativistic limit is studied. The Korteweg de—Vries Burgers (KdV-B) equation is derived by the standard 

reductive perturbation method. It is found to admit solutions for electrostatic solitary and shock profiles, whose basic features 

have been analysed numerically. The dynamics of the system is studied in perturbed and unperturbed system in detail. We 

also developed Nonlinear Schrodinger equation and from this we obtained the Rogue wave then analysed the various 

properties of it. We also examined a possible way to generate a Rogue wave and the stability of that wave in some particular 

condition with various parameters. We obtained a critical condition of existence of a stable wave.  

 

 

1. Introduction  

  
Compact astrophysical objects like white dwarfs 

and neutron stars keep themselves from collapsing 

under the immense gravitational force at the core 

by quantum degeneracy pressure. At these extreme 

conditions, quantum effects start dominating and 

the star is no more supported by thermal energy. 

Equation of state of such a system is provided by S. 

Chandrasekhar. At ultra-relativistic limits, the 

equation of state is,    
1/3 4/3.1 8 3p hcn  Due to 

the dominant quantum effects, we made a quantum 

hydrodynamic model (QHD) of the system. At 

such high densities, the de-Broglie wavelength of 

the electrons overlaps causing Bohm potential, 

exchange and correlation energy to have significant 

effects on the propagation of electrostatic waves. 

Similar QHD models were studied by Zobaer et al 

[1].  

    We have considered relativistic velocities for all 

components and ultra-relativistic degeneracy in 

only ions and electrons. “Rogue waves” (RWs) 

have typically very large amplitude and can 

generated more frequently than expected. 

Generally, Rouge waves have amplitude more than 

twice or thrice of a significant wave amplitude, will 

appear suddenly and disappeared without living a 

trace [2], [3] but we can localize. Korteweg–de 

Vries equation Burgers (KdV-B), non-linear 

Schrodinger equation (NLSE) has been developed 

to analyse the results of such non-linear systems 

like space plasma and planetary plasmas. The 

dynamical properties of a non-linear Rogue waves 

can be analysed by NLSE. 

 

2. Governing Equations  

  

 Continuity equation for dust, ions and electrons is 

given as, 

                        0
j

j j

n
n u

t x

 
 

 
                    (1) 

where j  is , ,d i e  for dust, ions and electrons 

respectively and jn , ju  are the number density 

and velocity of the respective species. Equation of 

motion for dust, ions and electrons is respectively 

given as, 
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Where   is the electrostatic potential, 

, , ,e d d i i jQ e Q Z Q Z e Z     is the number of 

effective charges of each species (for ions it is the 

average ionisation, for dust it is average number of 

electrons accumulated on it), jm is the mass of 

each species, 
j is the dissipation coefficient of 

dust and ions. Relativistic momentum of the 

species gives the Lorentz factor 
2 2

1

1 /
j

ju c
 



 

for the respective species. The ultra-relativistic 

pressure is given by the
1/3

4/31 3

8
j jp hcn



 
  

 
. As 

mentioned, the Bohm potential and exchange 

correlation energy becomes important for 

consideration for electrons with the longest de-

Broglie wavelengths of all other species. They are 

given by the second and third terms on the right-

hand side of equation. ℏ  is the reduced Planck's 

Constant. 

,

exc cor

xc e e eU     represents the sum of exchange 

and correlation potentials (which doesn't involve 

any actual force field and is completely a quantum 

artifact). 

 
2

1/30.985exc

e e
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2 2/ ,b ea e m   , is the relative permeability 

of the plasma medium. Simplifying we obtain, 
2 2

1/3 2/3

, 1.6 5.65xc e e e

e

e
U n n

m
    

3. Normalized Equations  

  

Normalised continuity equations for dust, ions and 

electrons are given as, 

                   0
j

j j

n
n u

t x

 
 

 
                            

(6) 

Equation of motion for dust, ions and electrons is 

respectively given as, 
2
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Here, 
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The dimensionless scaling factors used are 

0

0

.
j je

j j

j e

z nm
and

m n
    

 

4. Linear Dispersion Relation  

  

      We assume the field parameters to vary with 

the form,  
0

i kx t
e


 


 , where k  and   are the 

normalized wave number and frequency 

respectively. For the linearization we used the 

following expansion, 

 
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where   , ,j is d i e  for dust, ions and electrons 

respectively and jn , ju  are the normalised 

number density and normalised velocity of the 

respective species. Just using the first order 

perturbations we obtain the following linear 

dispersion relation, 

2
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where 
2
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0 0 2
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2
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j j j j j j
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g A z

c
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 
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 (in case of 

electrons this constant is 1), where j refers to dust, 

ions and electrons. 
1 21 ,e e e i i iC C      . 

 

As we have considered a dissipating system, k is 

complex. The tedious substitutions and 

simplifications were carried out using the sympy 

module in python. In DIAW's the frequency is well 

below plasma frequency causing the normalised 

frequency   to be well below 1, hence neglecting 

higher orders of  is a good approximation. For 

white dwarfs it can be shown that higher powers of 

0k  is a good approximation for any practical 

wavelengths and we are working with acoustic 

modes. The dispersion relation so obtained has 

been plotted in the figure below. 

 

Fig.1:   varies linearly with k at long wavelength 

range and the group velocity is very high. 

 

 

 

5. Derivation of KdV-B equation  

 

We used transformations  1/2 3/2

0 ,x V t t       

and 1/2

0j j    in the above equations. Where,   is 

the smallness parameter measuring the weakness of 

the dispersion 0V  is the phase velocity. The 
3/2  

terms in continuity and momentum equations give 

the following linear relations between the first 

order perturbations in the field parameters,  

                             1 1

0 0j j ju V u n                     (13) 
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Where,   , ,j d i e for dust, ions and electrons 

respectively. Here, 
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From the 
2  terms and then differentiating once 

with respect to  , 

   
       2 2 213
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e d i
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 
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(15) 

From the 
3  terms we obtain, 

 
     

22
3 3 3

2 e d d i in n n


 



  


Third order perturbations 

at   large, is small enough to be neglected in 

our investigation. After integration with respect to 

  leads to, 
 2

0








. From the 

5/2  terms of the 

continuity and momentum equations, we get the 
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non-linear equations. Performing some simple 

algebraic substitutions and using the above 

equation we obtain the KdV-B equations as 

follows, 

   
 

   1 1 1 13 2
1
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Using the transformations 
0V   , we obtain 

the KdV-B equation in the frame of the plasma 

wave as follows, 
   

 
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(16) 

The well-known series solution to this by Wazwaz 

is, 

    2 212 36
1
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where   is equal to
 1

 . 

This is a shock profile as shown below in the plot 

of vs   for different values of Mach's number. 

Where,  
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Fig.2: Shock profile for parameter values, 

1, 1.5, 0.5.i dH      

 

At 
0  0.20V   a compressive soliton can be seen but 

around 
0  0.21V  it becomes rarefactive soliton and 

also develops into a shock wave with further higher 

values of Mach number. 

 

6. Calculation of NLSE and 'Peregrine' 

soliton of Rogue wave for the system  

 

A method to study Rogue waves by mathematics is 

based on examining Nonlinear Schrodinger 

equation (NLSE). From the reductive perturbative 

technique, we approximated dispersion property 

and nonlinear property to the lowest order 

perturbation. We define a 'Peregrine' solution using 

the lowest order perturbation. A higher accurate 

model is been developed by taking account higher-

order approximations. We developed the lowest 

order perturbed solution of NLSE by taking the 

linear potential which is time-dependent.  

To transform KdV B to NLSE we use Fourier 

expansion method of the corresponding field as: 

 

1 0

,
q

sq is s

s s s

q s q s

e     
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  

             (18) 

0 and s  are slowly varying quantity with 

respect to time and space. 

Expanding the quantity   we get a form: 



The African Review of Physics (2020) 15 

Special Issue on Plasma Physics: 002 
 

14 
 

   

 

0 0 0 1

2 2 2 2

2 2

i i

i i

e e

e e

    

   

    

   

    

 
  

Defining new stretching variables (where 'c' is the 

group velocity), 
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By changing all variables in terms of   and   as 

well using perturbation we get, 
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Equating the coefficients of 
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perturbation expansion we will get, 
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In similar way equating the coefficients of 
2ie 

with 
2  from perturbation relation we get, 
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Equating both for the first harmonics terms, 
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0PQ   as 0C  suggests that the wave will be in 

stable region. Approaching to a rational a 

Peregrine 

soliton which gives for first order variation: 
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Fig.3: ‘Peregrine’ soliton of Rogue wave plotted 

against   and   

 
Fig.4: PQ plotted against k to find the stability. 

 

we see it is clear that P < 0 and Q > 0, for at least 

must be 0 < k <2. 

  26 2
0

3

Ak C B
PQ

Ak


  so plotting PQ over 

different quantities like Mach Number  M , 

streaming velocity  0v  we determined the critical 

condition 
ck k  for stability of Rogue wave (Fig. 

4). 
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7. Dynamics of the system   

 

7.1 Unperturbed Dynamics 

 

After deriving the existence of shock profiles this 

paper would determine how this shock propagates 

and evolves, how it responds to small 

perturbations, its stability and how the system 

responds to very small changes in initial conditions 

that is its chaotic behaviour. Similar elaborate 

studies on were done on Thomas-fermi plasma [4] 

and electron-acoustic super non-linear waves [5]. 

First, we would give a brief account of the 

unperturbed dynamics of the system. Integrating 

Equation (16) once with respect to  ,  

   
2 2

02
0

2
A V B C

   


  

   
     

   

          (25) 

Integrating again we obtain, 
2 3

0 0
2 6

A V B C
  

 


 
     

  

                (26) 

Taking 








, equation (25) becomes, 

      
2

0
2

A C V B


    
    

 

             (27) 

Where
2

2






 



. Solving this numerically and 

plotting   vs   we obtain the following.  

 
Fig.5: Phase trajectory of the system with initial 

conditions 
0 02.5, 0.5   and the attractor is 

approximately at    0 0, 800.0,0.0   .  

 The shock profile shown in figure (2) is the 

structure of the wave. In this section we are 

analysing how it propagates through space and 

evolves in time. But it is necessary a priory to 

understand that the figure (5) and the differential 

equation in (27) doesn't denote the trajectory in 

physical space. It is a phase trajectory that is the 

variation of the quasi velocity with quasi position 

as the quasi time evolves. 

It is evident from figure (5) that the system orbits 

around some point. Then as quasi-time evolves, the 

orbit decays and the system approach the point. 

After we have allowed a large amount of time to 

the system to evolve one evidently notices by 

looking close into figure (5) that it becomes 

apparently stable in an orbit very close to the point. 

This point is called attractor. 

 
Fig.6: This represents the periodic DIAWs. The 

periodic variation with quasi-time is shown here. 

 

7.2 Perturbed Dynamics 

 

So far, we dealt with a system which has no 

external source of disturbance. Now we shall in 

detail investigate the evolution of a small periodic 

external driving force on the system. We choose 

the periodic force to be  0 cosf  . We get a 

modified equation (27) as,  

 
2

0 0 cos
2

A C V B f


     
     

 

            (28) 

 We employed the numerical technique and 

obtained the phase trajectory of the perturbed 

dynamical system. Here we have provided different 

initial conditions, that is 2 different values of 

 0   ,  0   . 
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Fig.7: The amplitude and frequency of the driving 

force is given as, 
0 0.2f   and 0.3.   

 

Notice the difference in trajectories in figure (7) 

owing just to the very small difference in initial 

conditions. The trajectories represented with blue 

and orange have initial conditions 

   0 0, 0.22,0.0    and  0.15,0.7  respectively. 

By just looking at the early evolution of the system 

it may be tempting to declare it as a largely chaotic 

system but that is not the case. The reason is that at 

the later part of the evolution, both of the 

trajectories eventually approach a stable orbit 

around the same attractor. It hints at a single 

stability of the system. In our future work we 

would work upon Lyapunov exponents in an 

attempt to find whether other hidden attractors 

exist. 

 

8. Conclusion  

 

We have obtained a shock profile for a relativistic 

degenerate dense dusty plasma which showed its 

high response towards varying Mach number. The 

stability of the system was studied in detail. 

Assuming periodic driving force it was shown that 

the system hints at a single stability. This study can 

be applied to study of shock waves in the plasma 

environment of compact astrophysical objects such 

as white dwarfs. The shock waves which is 

supposed to transports large part of the energy in 

these environments seems to be quite stable and not 

much chaotic.  

 We studied the first-order solution for Rogue wave 

and plotted it against   and  also projected along 

three planes. By adopting values of P and Q we 

obtained the Rouge wave. The spatial part as well 

as temporal behaviour of Rogue wave has been 

discussed here. Peak of the wave determines how 

intense the potential is. For a particular   value 

there is a critical value of   c  value also for a 

particular   we can get a critical value of  c 

. Using the perturbating technique, we have shown 

the wave envelope solutions as shown in Fig. 3. 

    So far, we have studied the stability of this wave 

generated by the system. For the critical case as for 

P = 0. Where we get, 

3
c

C
k k

A
   

      It is clear that if we set  0A  in Fig. 4 then 

PQ becomes goes to negative value so then there 

will be no instability as well as the equation drops 

to KdV-NLSE. So, for this case wave is stable for 

that particular reason Rogue wave cannot be 

generated further. Also, the value of k  is too large 

for which we have got a critical condition in other 

way we have got critical condition when 

ω saturated for large k  values. 
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