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Here, in this paper, the One Dimensional Quantum Hydrodynamic (QHD) model is used to investigate electrostatic-acoustic 

solitary wave structures in two-component plasma (ion and electron) at some finite temperature. We derived a linear disper-

sion relation by perturbation expansion technique & studied the dependency of both dispersion relation and damping factor 

(Which is Due to Viscous Coefficient) with the Viscosity coefficient (ɳ). Moreover, by using the reductive perturbation tech-

nique, the KdV–Burger equation has been carried out analytically & from the solution, we obtained the solitary profiles and 

shock fronts we also studied the parametric dependence Quantum diffraction parameter (H). Hence the evolution of rogue 

waves has been studied by converting the KdV-Burger equation into an NLSE. 

 
 

 1. Introduction  

 

In recent times, the Physics of Quantum Plas-

mas/Astrophysical Plasma became a rapidly growing 

subject of plasma physics. There has been a huge 

interest in studying the different aspects of wave 

propagation in quantum plasma such as Ion-acoustic 

[1], electron-acoustic [2], Dust acoustic [3] in a two 

or three-component Plasma. The study of the propa-

gation of the wave in quantum plasmas has gain im-

portance due to its vast application in understanding 

the particle or energy transport phenomena on short-

scale lengths i.e., in micro and nanoscale electronic 

devices and dense compact stars [4-10] and other 

interstellar objects.  

    In ordinary Cases, we focused only on high tem-

perature and low density where quantum effects 

have no impact. But in nature, the quantum effects in 

plasmas become important when the Fermi tempera-

ture, which is related to the density of plasma com-

ponent (electron, ion, positron, etc.) becomes equal 

or greater than the system’s spatial scales of thermal 

temperature or the inter-particle distance becomes 

smaller or of the same order of the particle’s de 

Broglie thermal wavelength (λD). This  phenomenon 

is well observed in some Compact astrophysical ob-

jects (e.g. white dwarfs, neutron stars, magnetars, 

etc.)  

    To study the dynamics of wave in quantum plas-

mas we will use the quantum hydrodynamic (QHD) 

model [4, 5, 9]. The quantum hydrodynamic (QHD) 

model is derived by taking velocity-space moments of 

the Wigner equations the same as the classical fluid 

model. it consists of a set of equations describing the 

transport of charge, momentum, and energy in a 

quantum charged particle system interacting through 

a self-consistent electrostatic potential. In this model, 

the quantum effects appear through the quantum sta-

tistical (Fermi) pressure [11] and the Bohm potential 

[12] (due to quantum diffraction or tunneling effects).     

There can be other pressure forms like relativistic 

pressure [13-14], even certain other effects due to 

thermal anisotropy may arise [14], as a result of such 

anisotropy violation of the incompressibility of fluid 

in phase space can be theorized [15]. The QHD is 

useful to study the collective effects on microscale 

lengths and has its limitation that is large compared to 

the Fermi Debye lengths of the species in the system.     

For example, it may lead to the generation of new 

wave modes in plasma [16]. For simplicity, straight-

forward approach, and numerical efficiency the QHD 

model has been widely used [17-24]. For the first 

time a detailed study of ion-acoustic waves was done 

by Haas et al. [4-5] Gardner and Ringhofer [17] has 

studied the electron-hole dynamics in semiconduc-

tors. Using the same model Shukla and Eliasson [18] 

have studied the dynamics and formation of dark soli-

tons and vortices in quantum plasma. It has also been 

used to study the Korteweg deVries (KdV) solitary 

wave structure for ion-acoustic waves [19, 20], elec-
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tron-acoustic waves [21], dust-acoustic waves, and 

dust ion-acoustic waves [22, 23].In recent days we 

have studied the effect of quantum diffraction on the 

electron plasma waves and it has been found that 

quantum effects can significantly modify the modu-

lation instability conditions and the instability 

growth rates of finite-amplitude electron plasma 

waves [24].  

    There are also some works on Electrostatic shock 

fronts [25].The family of  K-dV equations and the 

non-linear Schrödinger equation (NLSE) along with 

their variants used to interpret and explore a variety 

of non-linear phenomena observed in non-linear sys-

tems, such as the ocean, water tank, space, and as-

trophysical plasmas as well as in laboratory experi-

ments [26]. The reductive perturbation technique has 

been used to derive the KdV family of equations, 

which describes the evolution of a non-modulated 

(non-envelope) waves. On the other side, the NLSE 

governs the dynamics of a modulated (envelope) 

wave packet [27] in a way that the non-linearities are 

in balance with the wave group dispersion relation 

resulting in the stationary solutions with an enve-

lope-like structure.  

     Experimental observations of the modulational 

instability of the monochromatic ion-acoustic wave 

first time reported by Watanabe [28]. Now from the 

concept of NLSE, we studied the evolution of the 

Rouge wave in Dense Plasma. Rogue waves are un-

expectedly high-amplitude single waves [29]. Rogue 

waves can appear both in the open ocean and in 

coastal areas [30]. The physical difference in the two 

cases is the depth of water. Deepwater waves are 

commonly described by NLSE [31]. Shallow water 

waves are described by the KdV equation [32, 32]. 

There are some other model equations for shallow 

water waves, such as the modified KdV (mKdV) 

[34] and Camassa–Holm [35] equations. The mKdV 

equation is also used in the analysis of optical soliton 

propagation [36]. Solutions of KdV and mKdV 

equations are related through the Miura transfor-

mation [37]. The first mathematical description of 

NLSE to rogue waves was given in [38]. It was sug-

gested that rogue waves are the solutions of nonline-

ar evolution equations that are localized both in 

space and in time. As an example of such treatment, 

the two lowest order doubly localized solutions of 

the nonlinear Schrödinger equation (NLSE) were 

given in [38]. The lowest order solution is called 

“Peregrine” which is a rational solution and can be 

independently considered as a prototype of an ocean-

ic rogue wave in [39].  

 

There are lots of works on this topic[40-60] but it this 

paper using the one-dimensional quantum hydrody-

namic (QHD) model for two-component electron-ion 

dense quantum plasma we have studied the linear and 

nonlinear properties of a plasma wave mode (Electro-

static Mode) as well as the evolution of rouge wave 

inside the dense quantum plasma. Here the paper is 

organized in the following pattern. In [Section-2] 

“Basic equation” section, we set our governing equa-

tions and with proper normalization & simplified 

them. In the next sections [Section-3], we obtain the 

“Linear Dispersion relations” [3.1], “KdV–Burger’s 

equation and Shocks and solitary formation”[3.2], and 

“ NLSE ”[3.3]. In [Section-4] we analyze the results 

from them & discuss the result with associated fig-

ures. 

 

2. Governing Equations 

 

We consider a one-dimensional quantum hydrody-

namic  QHD model to describe the dynamics of elec-

tron plasma waves in a two-component homogeneous 

plasma consisting of electrons and ions. With a 

streaming motion along the x-axis experiencing vis-

cous effects. We assume that the plasma particles be-

have as a one dimensional Fermi gas at zero tempera-

ture and therefore the pressure law [61] is 

 

 

 

Where j=e for electron and j=i for ions, mj is the 

mass,                         and KBis the Boltzmann con-

stant. nj is the density with the equilibrium value 

nj0. For Electrostatic mode QHD equations governing 

the  dynamics of plasma waves in two-component (e-

i) plasma are given by 
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Where uj, Qj, and Pj are, respectively, the fluid ve-

locity, charge, and pressure of the jth species, Qe=e, 

Qi=−Ze, Where e=−1.6× 10−19. ℏ is Planck’s con-

stant divided by 2, 𝜂 is the viscosity coefficient and 

 𝜙 is the electrostatic wave potential. We now intro-

duce the following Normalisation 

 

 

 

 

 

 

 

Where       is the  electron plasma os-

cillation frequency, VFeis the Fermi thermal speed 

of electrons &𝜂𝑗 is the viscosity coefficient. Using 

all the above relation we normalized the above equa-

tion (2-6) and obtained the following equations 
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Where H=ℏ𝜔𝑒 2𝐾𝐵𝑇𝐹𝑒⁄  is a nondimensional quan-

tum parameter proportional to the quantum diffrac-

tion,  𝜇=(𝑚𝑒 𝑚𝑖)⁄  (Electron and Ion mass ratio) and 

The parameter H is proportional to the ratio between 

the plasma energy ℏ𝜔𝑒 the energy of an elementary 

excitation associated with an electron  plasma wave 

and the Fermi energy𝐾𝐵𝑇𝐹𝑒. The equations (7)-(11) 

constitute the basic set of quantum hydrodynamic 

equations to be used in the investigation of the prop-

agation of plasma waves in quantum plasma. The 

second term on the L.H.S of Equations (9) includes 

quantum statistical effect through the Pressure term. 

(1). the second term on the R.H.S of equations (9) is 

due to the viscous effect. The third term in the L.H.S 

of Equations (10) arises due to quantum correction 

of density fluctuations and this type of quantum ef-

fect is called quantum diffraction or Bohm potential. 

 

  

  

3. Analytical Study 
 

3.1. Linear Dispersion Relation: 

 

To find the Linear dispersion characteristic of plas-

ma waves we make the following perturbation ex-

pansion for the field quantities 𝑢𝑒,𝑢𝑖,𝜑 ,𝑛𝑖,𝑛𝑒about 

their equilibrium values And from the normalized 

equation we get the linear dispersion relation. 
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Assuming that all the field quantities are varying a 

𝑒𝑖(𝑘𝑥−𝜔𝑡), we get for normalized wave frequency ω 
and wavenumber k, the following dispersion relation 

of electrostatic plasma waves which includes quan-

tum effects for electrons. After expanding all the 

substituting them in the normalized equation we get 

the following dispersion relation 

 

 

 

 

 

 

 

After substituting and eliminating we get a quadratic 

equation of ω hence from solving the equation we get 

the above dispersion relation. Here, the viscous term 

plays a very vital role. The dispersion relation      has 

a decaying complex part in addition to the real disper-

sion relation. In this case, if we substitute the wave 

number with real plus imaginary parts given by k = 

kr+iki , we obtain the two dispersion relations which 

are given by 
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Thus in the presence of streaming motion, we have 

two distinct modes of an electrostatic plasma wave 

in a two-component plasma (electron and ion). The 

real part gives us the linear dispersion characteristic 

curve for two-mode (fast mode and slow mode) first 

mode has a phase velocity greater than the later mode. 

So they may be called ‘fast mode’ and ‘slow mode’, 

respectively

On the other hand, the imaginary part gives us the 

damping curve which has only one mode. There is 

another thing to notice  For a given k, the frequency 

of oscillation of the fast mode increases with H and 

u0Thus, it is important to study the effects of stream-

ing motion on quantum electron plasma waves. In the 

absence of streaming motion (u0=0), the slow mode 

does not exist at all. 

 

3.2. Kdv-Burgers Equation: 

 

To derive the desired KdV-Burger equation describ-

ing the non-linear behavior of electrostatic Plasma 

waves in a two-component plasma (electron and ion) 

.here we use the standard reductive perturbation 

technique. At first, we introduce the usual stretching 

of space and time variables 

 

 

Where ε is a small parameter that characterizes the 

strength of nonlinearity, and M is the phase velocity 

of the wave. The stretching in η is due to the small 

variations in perpendicular directions Equations are 

written in terms of the stretched coordinates   and   

then the perturbation expansions of                                

being substituted. Solving the lowest order   equa-

tions     of ε with the  boundary conditions             0    

and      we get                                           

             

 

 

 

 

 

 

Going for the next higher-order terms in ε ( 𝜀5/2 ) and 

the following the usual method (substituting all the 

above relations and eliminating all the higher-order 

term) we obtain the desired Korteweg-de Vries-

burger (KdV-Burger) equation 
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Where A is the nonlinear term, B is the dispersive 

term and C is the viscosity term from the equation 

we can see that if the viscous coefficient = 0, then 

(17) reduces to the KdV equation with C=0. The dis-

sipation is taken into account due to the viscous coef-

ficient C. Now to obtain the nonlinear Characteristics 

of electrostatic plasma wave and evolution of solitary 

structure and its transformation into shocks under 

limiting situations we have to solve the equation. To 

solve the equation we use the standard method of 

hyperbolic tangent method. At first, we transform the 

independent variables ξ and τ into one variable χ as 

followsχ= ξ−Mτ  Where M is the normalized con-

stant speed of the wave frame and the boundary con-

dition as ξ →∞  then
2
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KdV–B equation can be written as 

 

 

 

 

Now using the equation as a solution and substitut-

ing the value of A, B and C we can study the para-

metric dependence of the electrostatic shock waves 

and the solitary formation and discuss the results 

with special reference to space and astronomical 

plasma phenomena. 

 

3. 3.  NLSE & Evolution of Rogue Wave: 

 

To study the conditions of formation and properties 

of envelope soliton we transform our KdV equation 

into an NLSE by expanding Eq. (17) into a Fourier 

series and thereafter following using perturbation 

expansion and using the stretched variables as fol-

lows.   Expanding  as a Fourier series we get 
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Again we have to use the stretched variables as 

 

 

Now, The complex Nonlinear Schrodinger equation 

of the   First type  

 

 

 

 

 

  

 

 

 

Now solving The NLSE we get 

 

 

 

Now to get the spatial and temporal evolution we 

have to rationalize the above term. Suppose the above 

term can be written as 

 

 

 

 

 

 

Where F is the magnitude part 1(2 )i P
e

  is the phase 

part and 22P
e

  is the damping part now To obtain 

spatial and temporal evolution we have to plot F vs. 

 or  with a dependent Parameter (i.e. H) respec-

tively. We can also study the stability factor by the 

term (PQ). 

 

  4. Result and Discussions: 

 

The parametric variations (viscosity coefficient (η) of 

linear dispersion expressions for this problem have 

been carried out graphically by keeping all the parame-

ters fixed in a certain range. We found that the disper-

sion relation (13) consists of real and imaginary seg-

ments. The real dispersion relation (14)  gives us the 

linear characteristic curve whereas the imaginary part 

(15) gives us the damping effect. 

 

 

 
 

Fig 1. Real Dispersion Relation for different viscosi-

ty coefficient     with(𝜂)  U0 =0.5, 𝜇 = 1/1000, H=2, 

Ki =0.5 

 
 

Fig-2.Imaginary part damping curve for different vis-

cosity coefficient (𝜂) with Uo=0.5,Kr=0.5 

 

 

 
 

 

Fig-3. Solitary profile for different quantum diffraction 

parameter (H)  Uo=0.3,ηo=1,M=1.4μ=1/1000, (H>2) 
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Fig-4. Solitary profile for different quantum diffraction 

parameter (H)  Uo=0.3,ηo=1,M=1.4μ=1/1000 H<2 

 

For viscosity (Fig-1) we get a dispersion curve which 

shows gradually increasing nature in the high viscous 

range. For the imaginary part(Fig -2) we plot only the 

magnitude of (15) and the damping effect is shown 

for different viscosity coefficients (η) here increasing 

viscosity coefficient (η) damping rate increases as we 

know viscous damping cases for fluid mechanics. In 

the previous section, we did our discussions on the 

linear dispersion curve. Now we are going to study 

nonlinear characteristics and shock fronts .we already 

derived the kdv-burger equation in section 3.2 (17). 

Here, we have studied the parametric dependence and 

provide figures corresponding to expressions for 

shock wave formation as well as solitary structures. 

For changing the values of H the change is quite 

prominent. It is noted that for physically acceptable 

situations with M > 0 and H < 2 only a compressive 

solitary wave profile is obtained & its amplitude and 

width decrease significantly with the increase of H 

(Fig.4). Now from eq. (19) It is noted that the disper-

sion coefficient B vanishes at H=2 (say Hc). This 

critical value of H destroys the KdV-Burger equation 

and no solitary wave excitation can occur for this 

critical case. Now for M>0 and H>Hc, we obtain rar-

efactive solitons (Fig-3) it is clear that the amplitude 

and width increase with increasing H unlike H<Hc. 

 

 

 

 

Here in (Fig-5), we have shown the evolution of the 

rogue wave in space-time. It is noted that normally 

we found one peak at a time but this is something dif-

ferent which can be explained as below. As we know 

we have plotted potential in the z-axis and potential is 

proportional to particle density, now for highly dense 

particle potential is also high and due to this the 

quantum effect became very prominent and the am-

plitude level is split up in a combination of rarefac-

tive and compressive and became symmetric.  
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