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In  this  paper  we  consider  the  propagation  of  electron  acoustic  solitary  waves  in  semi-classical plasma. Using 

quantum hydrodynamic model we obtain the dispersion relation and study the parametric variations of the dispersion curve. 

We further study the solitary profiles and its evolution by using the Korteweg-de Vries Burger equation. We extended our 
work to the study of Rogue waves.  The  results provide  with  interesting  findings  that  has  laboratory and  astrophysical  

importance. 

 

1. Introduction 

A Star and hence our Sun, is almost entirely an 

ionized ball of plasma, consisting of electrons and 

ions, in which there is hardly any gas (or neutral 

atoms).  In  1908  Kristian  Birkeland  observed  the 

auroras  and  magnetic  storms  in  nature  and  in   

his Terrella-experiment.  He  discussed  his  ideas  

on  the solar  wind,  the  origins  of  aurorae,  and  

his  terrella experiments   in   a   lavish   book,   ’The   

Norwegian Aurora  Polaris  Expedition,  1902-1903  

(1908-13)’. He immersed his terrella (small 

magnetized model ball representing the Earth) in 

plasma and found circular rings in the polar ends. 

These circular rings in the poles are now known as 

Auroras, Borealis and Australis. He made a set up in 

which he tried to explain magnetic storms.  

Birkeland never knew the structure of 

magnetosphere but current research follows 

Birkeland’s lines. This created a connection between 

laboratory experiment and astrophysics.  

    The  Gravitational  fields  are  so  weak  that  in  

case of  astrophysics  we  can  ignore  general  

relativity. In  case  of  various  astrophysical  objects  

relativistic effects  play  an  important  role  or  in  

some  cases dominant  role.  Among  these  one  is  

Neutron  Star, a  ’cold’  star  composed  of  neutrons  

majorly  and  is supported  against  collapse  by  

neutron  degeneracy pressure.  Another  is  Super  

Massive  Star,  a  giant object  supported  by  

radiation  pressure,  in  which general  relativity  

plays  an  important  role  in  its stability and 

instability. And the most amazing of all these is 

Black Hole, a body caught in a gravitational 

collapse.  In  1930’s  J. Robert  Oppenheimer’s  

work first  put  the  ground  theoretical  work  of  

Neutron Stars  and  Black  Holes  and  1960’s  the  

joint  effort of  radio  and  optical  astronomers  

revealed  a  great number of new objects.  

    Inside any star we get different types of pressures. 

The most common mode s tates the following 

pressures: inward pressure-gravitational pressure 

and outward pressure- pressure gradient.  These two 

forces, i.e.,  gravitational  force and  the  pressure  

gradient  balance  each  other  to stabilize  a  star.  

The origin of pressure gradient is the fuel of the star.  

Another pressure is radiation pressure.  This 

pressure is formed inside the star. Photons randomly 

move and collide with the wall. This   collision   

gives   rise   to   radiation   pressure. If gravitational 

pressure dominates over the pressure gradient and 

radiation pressure then the star starts collapsing.  

This can be stopped by electron degeneracy 

Pressure.  According to Pauli’s Exclusion Principal 

two electrons having same spin cannot stay in the 

same state. The plasma containing two groups of 

electrons occurs in both astrophysical environments [1, 2,3,4] as well as in laboratory experiments [5].  

    Another example is the Broadband Electrostatic 

Noise (BEN), which has been observed by the 

satellites missions [6, 7, and 8]. Two electron 

population plasmas usually follow Maxwellian 

distribution [9, 10], however some space and 

laboratory plasmas behave extremely different from 

Maxwellian distribution, where generalized 

Lorentzian or κ-distribution [11] comes into play. In 

recent years the study of EAWs became one of the 

prominent areas of research in physics  of plasmas 

[12].  

    Most of the past studies are in the classical 

region. Such an example of semi classical plasma is 

the “corona” which is “high temperature-low 

density” plasma. However in some astrophysical 
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cases (e.g. neutron stars, white dwarfs etc) at very 

high densities the thermal pressure becomes 

negligible compared to Fermi pressure. In those 

situations Quantum and relativistic effects are taken 

into account. The purpose of the present paper is to 

investigate the linear and nonlinear properties of 

EAWs in semi classical plasma by deriving the 

linear dispersion relation and the KDVB equation to 

study the formation of shock waves in EAW. The 

paper is arranged in the following manner: Section 2 

contains the basic equations. Section 3 contains the 

derivation of linear dispersion relation. Section 4 

contains the derivation Korteweg-de Vries Burgers 

equation using the standard perturbation techniques.  

Section 5 contains Rogue Waves and Section 6 

contains Cnoidal Waves and finally we conclude the 

paper with practical observations . 

 

2. Basic formulation 

 

We  consider  the  propagation  of  EAW  in  semi 

classical  plasma  consisting  of  two  groups  of  

electrons  at  different  temperatures  and  

stationary  cold ions  forming  a  uniform  

neutralizing  background. 

The dynamics of such plasma is governed by the 

following quantum hydrodynamic equations: 

 𝜕(𝑛ℎ)𝜕𝑡 +
𝜕(𝑛ℎ𝑢ℎ)𝜕𝑥 =0                                                 (1) 𝜕(𝑛𝑐)𝜕𝑡 + 𝜕(𝑛𝑐𝑢𝑐)𝜕𝑥 =0                                               (2) 0 = 1𝑚𝑒 (𝑒 𝜕∅𝜕𝑥 − 1𝑛ℎ 𝜕𝑃ℎ𝜕𝑥 + ℎ22𝑚𝑒  𝜕𝜕𝑥 ( 1√𝑛ℎ 𝜕2(√𝑛ℎ)𝜕𝑥2 )  (3) 

 

(
𝜕𝜕𝑡 + 𝑢𝑐 𝜕𝜕𝑥)𝑢𝑐 =(𝑒 𝜕∅𝜕𝑥 + ħ22𝑚𝑒  𝜕𝜕𝑥  ( 1√𝑛𝑐 𝜕2(√𝑛𝑐)𝜕𝑥2 ) + ᶯ𝑐  𝜕2𝑢𝑐𝜕 𝑥2             

   (4)          

                                                                            𝜕2∅𝜕𝑥2 = (𝑛𝑐 + 𝑛ℎ + 𝑧𝑖𝑛𝑖 )                                    (5)    

                                             

Pressure Law 

For Semi-Classical Case- 𝑃𝑗 = 𝑛𝐽 𝑘𝐵𝑇𝑗                                                      (6) 

For Quantum Scale-        𝑝𝑗 = 𝑚𝑗 𝑣𝐹𝑗23𝑛𝑗02 𝑛𝑗3                                                   (7)                   

Where the subscript j is  used to denote hot 

electron (𝑒ℎ ) and cold electron (𝑒𝑐 ), 𝐾ᵝ  is 

Boltzmann’s constant, 𝑇𝐹𝑒  is Fermi temperature. 

 

Stretching 

ξ=𝜖12 (𝑥 − 𝑣0𝑡) andτ=∈32 𝑡                                  (8) 

 

Perturbation Expansion 

[𝑛𝑗𝑢𝑗∅ ]=[ 1𝑢0∅0 ]+𝜖 [𝑛𝑗(1)𝑢𝑗(1)∅(1) ]+𝜖2 [𝑛𝑗(2)𝑢𝑗(2)∅(2) ]+….                   (9) 

𝑢𝑗 And 𝑝𝑗  are respectively the fluid velocity and 

pressure of the 𝑗 𝑡ℎ  species, ħ is the Planck’s 

constant divided by 2π; φ is the electrostatic wave 
potential and 𝑍𝑖 is the charge of an ion. 

 

Now using normalizing conditions   

 𝑥̅ ⇒ 𝑥ɷ𝑖𝑣𝐹𝑒  , �̅� ⇒ 𝑡ɷ𝑖 , ∅̅ ⇒ 
𝑒∅2𝐾ẞ 𝑇𝐹𝑒ℎ , 𝑛�̅� ⇒ 𝑛𝑗𝑛0   , 𝑢�̅� ⇒ 𝑢𝑗𝑣𝐹𝑒 ɷ𝑒=√4ᴨ𝑛𝑜𝑒2𝑚𝑒   is the Plasma Frequency 𝑣𝐹𝑒 =√2𝐾ẞ 𝑇𝐹𝑒𝑚𝑒  is the Fermi Velocity.  

 

The normalization wave equations become –  

 

For Semi-Classical Case- 𝜕(𝑛ℎ̅̅ ̅̅ )𝜕𝑡 ̅ +
𝜕(𝑛ℎ𝑢ℎ̅̅ ̅̅ ̅̅ ̅̅ )𝑑 𝑥̅ =0                                                (10) 𝜕(𝑛𝑐)̅̅ ̅̅ ̅𝜕𝑡 +

𝜕(𝑛𝑐𝑢𝑐̅̅ ̅̅ ̅̅ ̅)𝜕 𝑥̅ = 0                                             (11) 0 = 𝜕�̅�𝜕𝑥̅ − 12𝑛ℎ̅̅ ̅̅ 𝜕𝑛ℎ̅̅ ̅̅𝜕𝑥 ̅ + 𝐻22 𝜕𝜕𝑥̅( 1√𝑛ℎ̅̅ ̅̅ 𝜕2√𝑛ℎ̅̅ ̅̅𝜕𝑥2̅̅ ̅̅ )               (12) 

(
𝜕𝜕𝑡 ̅ + �̅�𝑐 𝜕𝜕𝑥)̅𝑢𝑐̅̅ ̅ = (𝜕�̅�𝜕𝑥̅ + 𝐻22 𝜕𝜕𝑥̅( 1√𝑛𝑐̅̅̅̅ 𝜕2√𝑛𝑐̅̅̅̅𝜕𝑥2̅̅ ̅̅ )+ŋ𝑐  𝜕2 𝑢𝑐𝜕 𝑥2̅ )                     (13) 𝜕2∅̅𝜕𝑥2̅ = (𝑛𝑐 + 𝑛ℎ𝛿 − 𝑛�̅� 𝛿1𝛿 )                                   (14) 

 

For Quantum Scale- 

 𝜕(𝑛ℎ̅̅ ̅̅ )𝜕𝑡 ̅ +
𝜕(𝑛ℎ𝑢ℎ̅̅ ̅̅ ̅̅ ̅̅ )𝑑 𝑥̅ =0                                               (15) 𝜕(𝑛𝑐)̅̅ ̅̅ ̅𝜕𝑡 +

𝜕(𝑛𝑐𝑢𝑐̅̅ ̅̅ ̅̅ ̅)𝜕 𝑥̅ = 0                                             (16) 0 = 𝜕�̅�𝜕𝑥̅ − 𝑛ℎ 𝜕𝑛ℎ̅̅ ̅̅𝜕𝑥 ̅ + 𝐻22 𝜕𝜕𝑥̅( 1√𝑛ℎ̅̅ ̅̅ 𝜕2√𝑛ℎ̅̅ ̅̅𝜕𝑥2̅̅ ̅̅ )               (17) 

(
𝜕𝜕𝑡 ̅ + �̅�𝑐 𝜕𝜕𝑥)̅𝑢𝑐̅̅ ̅ = (𝜕�̅�𝜕𝑥̅ +𝐻22 𝜕𝜕𝑥̅( 1√𝑛𝑐̅̅̅̅ 𝜕2√𝑛𝑐̅̅̅̅𝜕𝑥2̅̅ ̅̅ )+ŋ𝑐  𝜕2𝑢𝑐𝜕𝑥2̅ )                               (18) 𝜕2∅̅𝜕𝑥2̅ = (𝑛𝑐 + 𝑛ℎ𝛿 − 𝑛�̅� 𝛿1𝛿 )                                  (19) 

Here H= 
ħɷ𝑐2𝑘𝐵 𝑇𝐹𝑒ℎis a non dimensional quantum 

parameter proportional to the quantum diffraction. 

The parameter H is proportional to the ratio 
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between the plasma energy ħɷ (energy of an 

elementary excitation associated with an electron 

plasma wave) and𝛿 = 𝑛𝑒𝑐𝑜𝑛𝑒ℎ𝑜, 𝛿1=
𝑧𝑖 𝑛𝑖0𝑛𝑒ℎ𝑜 

Quasineutrality criteria reads (1+𝛿) = 𝛿1the Fermi 

energy 𝑘𝐵 𝑇𝐹𝑒ℎ. 

 

3. Dispersion characteristics  

 

In order to study the linear dispersion 

characteristics of EAW in the plasma under 

consideration we assume that the field quantities 

vary as e 𝑖(𝑘𝑥 −𝜔𝑡 ) . To consider progressive and 

damping wave solution let us split the 

wavenumber (k) into real and imaginary segments 

(k1 andk2) respectively. Accordingly the 

frequency (ω) will also have real and imaginary 
segments (ω𝑟𝑒𝑎𝑙 and ω𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 ). After some 

algebraic treatment we get the frequency of the 

progressive wave given by  the dispersion relation 

[Eqns 20 and 21]. 

a) Dispersion characteristics for semi-

classical plasma.  

Now we assume the entire field variables are 

varying as exp [i(kx−wt)], we get normalized 
wave frequency ω = ω𝑟𝑒𝑎𝑙 + i. ω𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦   and 

wave number k = k1 + ik 2. we get following 

dispersion relation 𝜔𝑟𝑒𝑎𝑙 =𝑢0𝑘1+ŋ𝑐 𝑘1𝑘2 +
√ 𝛿(𝑘12 −𝑘22 )(12+𝐻24  (𝑘12−𝑘22 ))1+(𝑘12 −𝑘22 )𝛿(12+𝐻24  (𝑘12 −𝑘22 )) + (𝐻2−ŋ𝐶2 ){(𝑘12 −𝑘22 )2−4𝑘12 𝑘22 }4     

 

                                                                         (20) 𝜔𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 =𝑢0𝑘2-ŋ𝑐2 (𝑘12 − 𝑘22) +√ 𝛿(1+𝐻2 𝑘1𝑘2 )1+𝛿(1+(𝐻2  𝑘1 𝑘2) + (𝐻2 − ŋc2)k12k22(k12 − k22)            

 

                                                                         (21) 

 
 

Fig. 1. Dispe r sio n curve s for diffe r en t value s of 
Quantu m Diffr a ct ion Para m e ter (H) at consta n t δ = 0.6 

and u0= 0.5 

 
 

Fig. 2.  Disper sion curv es for differ e nt value s of fluid 
veloci ty at consta n t δ = 0.6 and H=1 

 
 

 
Fig.3 .D isp e rsion curv es for diffe r en t value s of 
char ge neut ra l ity at equil ib rium  ‘δ’ at consta nt 

u0=0.5 and H=1 

Now, Figures (1,2,3) represents the long wave 

dispersion character in EAW’s in semi classical 

plasma composed of hot electron and inertial cold 

electrons and stationary ions. We numerically 

examine the behavior of dispersion relation (20, 21) 

with respect to the variation of H, 𝑢0 𝑎𝑛𝑑  ŋ. Figure 

(1,2,3) shows the variation ɷ with k for different 

values of H, 𝑢0,ŋ.  Figure (1), (2) and (3) shows ɷ-

k curves for different values of H,𝑢0 , ŋ 

respectively. Obviously wave frequency ɷ also 

increase with increase of the parameters. From 

Figure (1) we see that for the variation in H the 

relation between ɷ𝑟𝑒𝑎𝑙 and 𝑘1get affected. The 

relation is non linear for very small value of 𝑘1 nearly to 1.7. After that ɷ𝑟𝑒𝑎𝑙 and 𝑘1 behave 

classically (linearly). There is a certain bump or 

peak achieved at a certain point (𝑘1=1.5) in the non 

linear region. We also notice that the non linearity 

varies with variation of H in the non linear region. 

Whereas in the linear region there in no variation in 
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the figures. From Figure (2) we notice that the 

relation of ɷ𝑟𝑒𝑎𝑙  and 𝑘1 doesn’t get effected due to 

variation in 𝑢0 , and nearly linear for higher values 

of 𝑘1 (𝑘1 > 2). From Figure (3) we notice that the 

graph between ɷ𝑟𝑒𝑎𝑙  and 𝑘1 has two region due to 

variation in ŋ - Linear and Nonlinear Region, which 

also gets affected for different values of ŋ. 
ŋ=1 and ŋ=2 (ŋ< 𝐻): The non-linearity is very 

slight and the nonlinear region is very short range 

for this case. The whole plot is nearly linear 

throughout the progression of 𝑘1. However slight 

change in slope occurs at 𝑘1 = 0.8. ŋ=H=3: Here 

no non linearity in observed due to the fact that the 

term in the R.H.S in equation (20) containing(𝐻2 −ŋ2), becomes 0. So we can conclude that the non 

linearity comes only due to ŋ. ŋ> 3: Here the plot 

looks identical to Figure (1) where a nonlinear 

region is observed for 𝑘1<1. Beyond which the plot 

becomes linear. A bump is also observed for 𝑘1=0.9 in the non linear region. 

 

Group velocity: The Group Velocity (𝑐𝑔) of a wave 

is the velocity with which the overall envelop shape 

of the wave’s amplitudes-known as the Modulation 

or Envelop of the wave-propagates through space.  

 

Fig. 4 Group velocity (cg  ) vs wavenumber (k) 

 

 𝑐𝑔 = 𝑑ɷ𝑑𝑘 Vs k graph is drawn with the variation of 

H in Figure (4). The Figure has two regions 

Linear(𝑘1 > 1.5) and Non linear(𝑘1 < 1.5). We 

observe two peaks in the non linear region at nearly 

0.25 and 1.4 respectively. 

 

 

 

 
 

Fig. 5. ωimaginary vs k2Variation of H 

 
 

Fig. 6. ωimaginary vs k2Variation of u0 

 
Fig. 7. ωimaginaryvs k2 Variation of η 

 
Fig.8.Dispersion curves for different values of 
charge neutrality at equilibrium δ 

at constant u0=0.5 
and H=2 

 

From Figure (5) we see that the relation between 𝜔𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦  𝑎𝑛𝑑  𝑘2 is linear for 𝑘2>1. For H=1 and 

H=2 the variation is very low and non linearity is 

very slight and the two plot intersect (ie possesses 

same value 𝑜𝑓 𝜔𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 ) for 𝑘2=0.8 For H=3 the 

graph is non linear till 𝑘2=0.9 and a bump is 
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observed in 𝑘2=0.8. From Figure (6) we see that 

the relation of 𝜔𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦  𝑎𝑛𝑑  𝑘2 doesn’t get 

affected due to the variation of 𝑢0 and nearly linear 

for values greater than 𝑘2>1. From Figure (7) we 

see that the graph between 𝜔𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦  and 𝑘2 has 

two region due to variation in ŋ - Linear and Non 

linear Region, which also gets affected for different 

values of ŋ. ŋ> H(= 3): The non linearity is very 

slight and the non linear region is very short range 

for this case. The whole plot is nearly linear 

throughout the progression of 𝑘2. However slight 

change in slope occurs at 𝑘2 = 0.6. 
ŋ=H=3: Here no non linearity in observed due to 

the fact that the term in the R.H.S in equation (21) 

containing (𝐻2 − ŋ2), becomes 0. So we can 

conclude that the non linearity comes only due to ŋ. 
ŋ< 𝐻: Here the plot looks identical to Figure (5) 

where a non linear region is observed for 𝑘2<1. 

Beyond which the plot becomes linear. A bump is 

also observed for 𝑘2 between 0.8 and 0.9 in the 

nonlinear region. All the graphs intersect on a 

single point and the gives the same value of 𝜔𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦  at 𝑘2 = 0.7. 

b) Dispersion characteristics for Fermi 

plasma 

Assuming that all the field quantities vary as exp 

[i(kx − wt)], then for normalized wave frequency 
and wave number k, we get Dispersion Relation 1 = 1[(𝜔−𝑘𝑢0)2−𝐻2𝑘44 ] − 1𝛿[𝑘2 −𝐻2𝑘44 ]                          (22) 

We numerically examine the behavior of dispersion 

relation with respect to variations of, H and u0. In 

all the three cases i.e. Fig.(8), Fig.(9) and Fig.(10), 

there is an increase in the slope of dispersion curve 

i.e. the phase velocity (
𝜔𝑘 ) increases with increase in 

value of either any one or all three of the 

parameters. In Fig.(8), as we shift to higher values 

of δ the ω − k graph also shifts to higher value, 
however the variation is not much. As δ is the ratio 
of number density of electrons to that of holes, it 

implies more will be the number density of 

Electrons as compared to holes, higher will be the 

curve. Also we can see, the variation of ω with k 
occurs more rapidly at higher value of Fig. 8. 

Dispersion curves for different values of charge 

neutrality at equilibrium ‘δ 0 at constant u0 = 0.5 

and H=2 charge neutrality at equilibrium (δ) but 
becomes the same at higher value of k. In 

Fig.(9),the slope of dispersion curve increases with 

increase in value of H. Quantum Diffraction 

Parameter is ratio of plasma energy to Fermi 

energy of paired particles. Growing H broadens the 

range of permitted frequencies but after a certain 

point. Before that point, the curves are identical In 

Fig.(10),In this case, again, the phase velocity (
𝜔𝑘 ) 

increases weakly with increase in the value of u0. 

 

 

Fig. 9. Dispersion curves for different values of 
Quantum Diffraction Parameter (H) at constant δ = 

0.6 and u0= 0.5 

 

 
Fig. 10 Dispersion curves for different values of 

fluid velocity at constant δ = 0.6 and H=2 

4. Derivation of KdV-Burgers Equation  

 

In order to derive the equation of motion for 

nonlinear electron acoustic wave, we use the 

reductive perturbation method and the stretched 

coordinates as defined before. 

After doing some algebraic operations, we will 

obtain following KDV-B equation ( ∂∂𝜏 𝜙 (1) + 𝐴𝜙 (1) ∂∂𝜉 𝜙 (1) + 𝐵 ∂3∂𝜉3 𝜙 (1) −𝐶 ∂2∂𝜉2 𝜙 (1) ) = 0                                                                             

(22) 

For Semi-Classical Plasma- 

A=
4𝑅4−32𝑅 , B=

4𝑅4−𝐻2 (1+𝑅4)2𝑅 , C=(-
ŋ02 )  
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And For Fermi Plasma- 𝐴 =  − [ 2(𝑉0−𝑢0)2+1(𝑉0 −𝑢0)[(𝑢0−𝑉0)2+1]] 𝐵 = − 𝐻24(𝑉0 −𝑢0)[(𝑢0−𝑉0)2 +1] 𝑎𝑛𝑑  𝐶 = 𝜂𝑐0[(𝑢0−𝑉0)2+1] 

 

 

Fig. 11. ψ vs. ξ Variation of 𝑢0 

 

 

Fig. 12. ψ vs ξ Variation of H 

 
Fig. 13. ψ vs ξ Variation of ŋ 

 

 

Fig. 14. φ is plotted for different values of 

Quantum Diffraction Parameter (H) for m=0.2 and 

η=0.2 

 
 

Fig. 15. φ is plotted for different values of V0 − 
u0(m) for H=1 and η=0.2 

 
 

Fig. 16. φ is plotted for different values of 
Viscosity coefficient (η) for H=2 and m=0.2 

 

In order to solve the Kdv Burgers equation we 

introduce a transformation  

ψ=ξ– Mt                                                              (23)  

where M is the Mach Number (ie. Speed of the 

frame), η is the new phase variable combining both 
‘ξ’ and ‘τ’ into a single variable.  

We can study the evolution of the Shock Profiles of 

Kdv Burgers equations. The boundary conditions 

are given as ξ → 0 we get ψ → 0 ∂2 𝜓∂ξ2 → 0→ 0.  

The solution of Kdv Burgers equations  𝜙 = 12𝐵𝐴 sech2  𝜓 − 36𝐶15𝐴 tanh  𝜓                       (24) 

The above equation comprises of Solitary Structure 

(1st part) and Shock component 2nd part).  

5. Rogue waves  

 

Rogue Waves are surface waves. They are much 

higher than the other waves and are usually created 

in Open Ocean. Unlike normal ocean waves which 
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allow the ship to rise and fall relatively gently, 

these waves have very short wavelength and as a 

result it is extensively stiff. Tsunami must not be 

confused with Rogue Waves. Tsunami consists of 

series of waves that move through the entire water 

column usually caused due to an undersea earth 

quake. In the open ocean due to the long 

wavelength of multiple hundred kilometers one will 

even not notice when these waves pass below their 

ship. Fig. 16. 𝜑 is plotted for different values of 

Viscosity coefficient (η) for H=2 and m=0.2 These 
waves when hit the coast, slow down and get 

compressed and they grow to large heights. Rogue 

waves on the other hand arise from typical ocean 

waves and only effect relatively small quantities of 

surface water. They can build up from very calm 

and apparently safe Sea Water and thus is very 

dangerous. They arise in the open ocean and last 

for a short time, disappearing the way they form. In 

shallow waters, they would quickly become 

unstable and collapse creating no real problem to 

coast. But in the sea, they are devastating and can 

destroy even modern-day ships. Numerous ships 

are lost due to rogue waves. Rogue Waves are of 

different types- 

 • Single wave- Giant storm waves which build up 

to enormous heights  and usually collapse after a 

few seconds. • Walls of water- A wide wave walls 

that last much longer and travel a large distance in 

oceans  

•Three sisters- close successive waves. The 

properties of electron acoustic rogue waves in a  

hree component plasma system consisting of  ot 

electrons, cold electrons and stationary ions have 

been investigated.  

The occurrence of rogue waves in plasma can be 

adjusted by varying the parameters. The results of 

this may be applicable in space plasma. To find an 

explanation for them we can take the help of Non 

Linear Schrodinger Equations. It can be shown that 

it is possible for different wave components to act 

and exchange energy. In rare but frequent cases 

these integration can produce instability that allows 

the waves to suck energy in all the other waves 

surrounding it growing into Rogue wave. A non 

linear wave in Plasma named accordingly Rogue 

waves can be explained by NLSE 

The general Kdv-B equation states 𝐴 𝜕𝜑𝜕𝜏 + 𝐴1 𝜕𝜑𝜕𝜉 + 𝐴2𝜑2 𝜕𝜑𝜕𝜉 + 𝐵 𝜕3 𝜑𝜕𝜉3 + 𝑅 𝜕2 𝜑𝜕𝜉2 = 0 

 

Fourier expansion 

 𝜑 = 𝜖2𝜑0 + 𝜖𝜑1𝑒𝑖𝜓 + 𝜖𝜑1∗𝑒−𝑖𝜓 + 𝜖2𝜑2𝑒𝑖2𝜓+ 𝜖2𝜑2∗𝑒−𝑖2𝜓 + ⋯ 𝜓 = 𝑘𝜌 − ɷ𝜃 

 

Perturbation equation 𝜑0 = 𝜑0(1) + 𝜖𝜑0(2) + 𝜖2𝜑0(3) ⋯ 𝜑1 = 𝜑1(1) + 𝜖𝜑1(2) + 𝜖2𝜑1(3) ⋯ 𝜑2 = 𝜑2(1) + 𝜖𝜑2(2) + 𝜖2𝜑2(3) ⋯ 

 

 

Group velocity 

 

c=
𝑑ɷ𝑑𝑘 =-

3𝐵𝑘2𝐴0  

 

Again we have to use the stretched variables as, 

 𝜌 = 𝜖(𝜉 − 𝑐𝜏) 𝑎𝑛𝑑  𝜃 = 𝜖2𝜏  

Therefore, 

𝜕𝜕𝜏 =-isɷ-𝜖𝑐 𝜕𝜕𝜌 + 𝜖2 𝜕𝜕𝜃 

   
𝜕𝜕𝜉 = 𝑖𝑠𝑘 + 𝜖 𝜕𝜕𝜌 

Here, s is the order of the wave function. 

The complex Nonlinear Schrodinger equation of 

First type: 

(i
𝜕𝜑𝜕𝜃 ) − 𝑃 (𝜕2𝜑𝜕𝜌2 ) = 𝑄(𝜑 ∗𝜑)𝜑 

Where, 

P = (
3𝐵𝑘 −𝑖𝑅𝐴0 ) 

Q = [
𝐴12 𝑘𝐴0 ( 1(6𝐵𝑘2 +𝑖4𝑘𝑅 ) − 13𝐵𝑘2 )]  

 

Going to higher order of both harmonics and 

perturbation scale factors we obtain complex 

Nonlinear Schrodinger equation of Second type 

(i
𝜕𝜑𝜕𝜃 ) − 𝑃1 [(𝜕2𝜑𝜕 𝜌2 ) + 1∅ (𝜕𝜑𝜕𝜌 )] = 𝑄1(𝜑∗𝜑)𝜑          (25) 

 𝑃1 = (6𝐵𝑘 − 𝑖𝑅𝐴0 ) ( 2𝐴16𝐵𝑘2 + 𝑖4𝑘𝑅 ) 

𝑄1 = [− 2𝐴12𝑘3𝐵𝑘2 ( 𝐴16𝐵 𝑘2 + 𝑖4𝑘𝑅)
+ 4𝑘𝐴2] (6𝐵 𝑘2 + 𝑖4𝑘𝑅2𝐴1𝐴0 ) 
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Solving the NLSE 

i
𝜕𝜑𝜕𝜃 + 𝑃 𝜕2 𝜑𝜕 𝜌2 = −𝑄𝜑𝜑𝜑∗𝜑                                   (26) 

 𝜑(𝜌, 𝜃) = √2𝑃𝑄 [ 4(1 + 4𝑖𝑃𝜃)1 + 16𝑃2𝜃2 + 4𝜌2− 1] exp (2𝑖𝑃𝜃 ) 

Note the –Q on RHS, and +P on LHS, change signs 

accordingly. 

From the given Kdv-B equation we get the values 

of P and Q, 𝐴0 = 1, 𝐴1 = 𝐴 =
4𝑅4 −32𝑅 , 𝐴2 = 0, 𝐵 =𝐵 = 4𝑅4−𝐻2 (1+𝑅4)2𝑅 , R=-C=

ŋ_𝑐2  𝑃 =(
3𝐵𝑘−𝑖𝑅𝐴0 ) = (3Bk-iR), Q = [

𝐴12𝑘𝐴0 ( 1(6𝐵𝑘2 +𝑖4𝑘𝑅) −13𝐵𝑘2 )] 

 
              Fig17 Amplitude vs Wave number 

 
                   Fig.18 Separation of Wave number 

 

                Fig 19 P/Q vs Wave number 

 

                    Fig. 20 P*Q vs Wave Number 

 

Fig 21 P*Q vs K with variation in H 
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Fig 22 P/Q vs K with the variation of H 

6. Cnoidal waves 

 

In fluid dynamics, a cnoidal wave is a nonlinear 

and exact periodic wave solution of the Korteweg–
de Vries equation and in the limit of infinity 

Wavelength turn into solitary waves. Unlike Rogue 

Waves, these waves characterize sharper crests and 

flatter troughs. These solutions are in terms of the 

Jacobi elliptic function cn, which is why they are 

Coined cnoidal waves. They are used to describe 

surface gravity waves of Fairly long wavelength, as 

compared to the water Depth. Nonlinear cnoidal 

waves such as dnoidal (dn) Are found in the 

defocusing region of ionospheric Plasma. To 

investigate the steady-state solution of Electron 

Acoustic Waves (EAW) cnoidal waves of KdVB 

equation, we use η = ξ −vτ transformation, where v 
is the velocity of cnoidal waves moving with the 

frame. Equation 24 transforms to 

2
2

12
0

d
B C V A

d

   
 


   


                 (27) 

2

1 d
( ) ( )

2 d
V E

  


 
  

 
                              (28) 

Where, 

3 21( )
3 2

VD
V

B B
   

 

And

 

( )
C d

E d
B d

 



 

 
Where E (ψ) is the Total Energy and becomes 
constant of motion for the case C=0. Note that the 

potential V (ψ) is asymmetric and corresponds to 
the potential of Helmoltz Oscillator. In the figure 

we have solution of the Cnoidal Wave for C=0 case 

which is given below- 

2

1( ) ( , )
c
cn D m     

                         (29) 

Where cn is the Jacobi elliptic function, 

 

 3 1
,

6

A
D

B

 
  

2

3 1

3
m


 





 

And 

3 2c
     

The pseudopotential roots, 

2

1
12

(1 3) (1 3)

2 4 4

V i V i
T

A AT A
  

  
 

The energy depletion coefficient is  

3 2 3 2 2 4 2

0 0 012 2 6 6T V B AE BV A E B A E   
 

Now, for m → 1 and E0 = 0 the cnoidal wave 
solution approaches to solitary wave solution 

(where we do 𝜓1 = 𝜓2 = 0).
 𝜓𝑐 = 𝜓3 = 12 (𝑉𝐴 + 1𝐴𝑉 + 𝑉3𝐴 ) = 𝜓𝑚  

1

6

A m
D

B N


   

In the limiting case, the Jocobi elliptical function 

Cn(x) degenerates to sech(x) from equation of 

EAW solitary solution is  

2( )
m

n sec h
W

 
                                        (30)

 

Where 𝜓m and W are the peak amplitude and width 

of the solitary wave respectively. 

 
 

Fig. 23. V(ψ) vs ψ 
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Fig. 24. (ψ') vs ψ 

 
Fig 25. (ψ') vs ψ with the variation of H  

7. Results and Discussions  

 

In this paper we have done detailed study of space 

plasma driven by Classical as well as Quantum 

pressure laws. Stars are giant balls of plasma, 

where a burning/fusing core supplies the energy of 

the star to complete its stellar evolution. There are 

lots of Component forces acting inside a star, 

maintaining the stability of the star. One 

component of the pressure in a star is the gas 

pressure or particle pressure. As the large mass of 

hydrogen and helium gas and dust (the protostar) 

begins to contract as a result of its gravitational 

forces, increased particle speed and collisions cause 

the average particle kinetic energy to increase. 

From the idea of kinetic temperature, it follows that 

there is an increased temperature and an associated 

pressure. Starting the process of evaluating particle 

pressure with an ideal monoatomic gas, the 

Maxwell-Boltzmann velocity distribution can be 

used. The resulting expression for particle pressure 

is Pparticle = nkT. Where n is the number density of 

particles, k is Boltzmann’s constant and T the 

temperature. This can be used a first estimate of 

particle pressures in stars. The Classical pressure is 

applicable for young stars which have enough fuel 

to burn towards their Red-giant or Super-giant 

phase. Betelgeuse, in constellation of Orion, is an 

example of a star in Red giant phase. But, when the 

triple-alpha process in a red giant star is complete, 

those evolving from stars less than 4 solar masses 

do not have enough energy to ignite the carbon 

fusion process. They collapse, moving down of the 

main sequence until their collapse is halted by the 

pressure arising from electron degeneracy where 

Pauli Exclusion Principle comes into play. Electron 

degeneracy is a stellar application of the Pauli 

Exclusion Principle, as is neutron degeneracy. No 

two electrons can occupy identical states, even 

under the pressure of a collapsing star of several 

solar masses. For stellar masses less than about 

1.44 solar masses, the energy from the gravitational 

collapse is not sufficient to produce the neutrons of 

a neutron star, so the collapse is halted by electron 

degeneracy to form white dwarfs. An interesting 

example of a white dwarf is Sirius -B. Sirius-B 

gives an example of the size of a white dwarf. 

Electron degeneracy halts the collapse of this s tar at 

the white dwarf stage. We have worked with semi 

classical plasma containing hot electron, cold 

electron and ion creating a neutralizing atmosphere. 

We have derived the dispersion relation which 

contains both real and imaginary part. We have 

worked with two different pressure laws. The 

imaginary part proves the damping characteristics 

which destroys the principal of conservation of 

energy. Figure (1-3) shows wreal Vs kreal graph 

plotted with the variation of H,u0 and η. Fig.(5-7) 

shows the variation of wimaginary and kimaginary  for 

different values of streaming velocity u0. The real 

part characterizes the free propagation of the wave 

while the imaginary part results in damping. It was 

first Landau who observed the imaginary part of w. 

So the EAW will be a heavily damped as the wave 

velocity is comparable to electron velocity. Fig. (9-

10) shows the same with fermi plasma. Hereafter, 

we examine the likelihood of the electron-acoustic 

rogue wave’s propagation in Maxwellian as well as 

Quantum plasma in the framework of the 

Korteweg-de Vries (KdV) equation. For this 

purpose, we use the reductive perturbation 

technique to carry out this study. It is known that 

the families of the KdV equations have solutions of 

distinct structures such as solitons, shocks, kinks, 

cnoidal waves, etc. However, our prime focus was 

only on rogue waves and cnoidal waves. Again, the 

dynamics of the nonlinear rogue waves is governed 

by the nonlinear Schrödinger equation (NLSE). 
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Thus, the KdV equation is transformed to their 

corresponding NLSE developing a weakly 

nonlinear wave packet. We show the possible 

region for the existence of the rogue waves and 

define it precisely for typical parameters of space 

plasmas.  Figure (11-13) shows the shock profile 

for different values of streaming velocity u0, 

quantum diffraction parameter H, and η. It shows 
that a slight change in H increases the amplitude. In 

figure (14-16) the variation of ξ shows the steeper 
characteristics of shock waves. It shows the 

solitonic like structures in plasmas which leads to 

nonlinear waves. To conclude, we have studied for 

the first time the ion-acoustic cnoidal waves and 

solitons in unmagnetized Quantum plasma. The 

KdV equation for ion-acoustic waves in quantum 

plasma was obtained using the reductive 

perturbation method with periodic wave boundary 

conditions, appropriate to study cnoidal waves. It is 

found that both Compressive and rarefactive 

nonlinear ion-acoustic cnoidal wave structures are 

formed in such degenerate plasma, which depends 

on the quantum parameter. The dependence of 

wave frequency and wavelengths on the non-Linear 

ion-acoustic wave amplitude is also investigated at 

different values of quantum parameters with the 

degenerate Plasma densities exist in astrophysical 

and laboratory plasmas. It is found that the 

dependencies of wavelength and frequency on 

wave amplitude at different quantum parameters. 

For electrons behave differently for compressive 

and rarefactive ion-acoustic cnoidal wave cases. 

The results are useful to understand how nonlinear 

wave propagates in quantum plasmas. 
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