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The basic aim of thisstudy is to use one dimensional Quantum hydrodynamics model to analyse the solitary profiles and shock 
fronts of Electrostatic and Ion acoustic waves in semi classical plasma, by using the governing equations to derive the KdV-Burgers 
equation with the help of standard perturbation techniques and stretching expressions, and then extending the study of the 
nonlinearities of the ion acoustic waves to obtain the Non Linear Schrodinger’s Equation and studying the formation of rogue 
waves from it, also analyzing the2D and 3D plots to conclude certain observable and experimental facts. The paper also includes 
the study of the dynamics of the system and it’sbehavioral changes when subjected to small perturbations. 

1. Introduction 

 

There exists a huge number of low and high  

frequency modes of propagation of the waves in 

plasma. Two such types of modes are the 

Electrostatic and Ion acoustic modes. These are low 

frequency longitudinal p lasma oscillation. The ion 

acoustic wave [1, 2] equation describes the dynamics 

of collision less plasma made of cold ion and hot 

electrons. These waves arise because of the restoring 

force imparted by the electrons ’ thermal pressure [3], 

while the effect of inert ia is portrayed due to the 

mass of the ions [4, 5]. In case of electrostatic 

waves[6], both the electrons and the ions present in 

the plasma act as oscillating species, and the wave 

propagation is possible because of these 

oscillations[7,8]. Many types of nonlinear 

electrostatic structures [9] could propagate in 

electron-positron plasmas such as solitary shock, 

blow-up and rouge waves. Quantum hydrodynamic 

model is one of the popular ways to describe the 

dynamics of the plasma part icles at quantum scales 

[10]. This model consists of a set of equations [11] 

describing the transport of charge carriers, 

momentum and energy in a charged particle system 

interacting through a self-consistent electrostatic 

potential. Shock wave is a type of propagating 

disturbance [12] that moves faster than the speed of 

sound. It is generated, when there is an abrupt 

change in the temperature, pressure or density of a 

medium. It is a discontinuous surface that connects 

supersonic and subsonic flow. Entropy increases 

when a shock wave flows so the flow is an  

irreversible p rocess, and the system loses its 

equilibrium due to this. Shock waves also appear in  

plasma but differ from normal gas due to the 

electromagnetic nature of plasma. The shock waves 

in plas ma are generally generated due to the 

interaction between the moving charged particles and 

electric or magnetic fields, resulting in the format ion 

of huge electromagnetic forces, which accelerate the 

ions to Supersonic speeds, thus carrying the shock 

waves forward. When the flow of p lasma is parallel 

to the magnetic field, shock wave appears in 

governing equation for velocity potential is in  

hyperbolic relat ion with match number [13]. A  

soliton (solitary / standing wave) in p lasma tends to 

become shock fronts with increasing viscosity of the 

system. Such shock waves can frequently be seen in 

the sun’s corona in the form of solar flares which  

shoots the ions with such Supersonic speeds that they 

reach the earth’s outer atmosphere and interact with 

the planets magnetic fields to generate beautifully  

colored patterns called the Aurora Borealis. Rouge 

waves are unusually large, unexpected and suddenly 

appearing surface waves that can be extremely  

dangerous [14, 15]. In Oceanography, rouge waves 

are more precisely defined as waves whose height is 

more than twice the significant wave height. Rouge 

waves can occur in media other than water. The 

rouge waves are observed experimentally in plasma 

physics, in ocean, in  Bose-Einstein condensates, in 

super-flu id helium etc. In plasma physics, we study 

rouge waves by solving nonlinear Schrodinger (NLS) 

equation [16]. Rogue wave suddenly¨ tend to appear 

and then disappear, without any trace. It can be 
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created due to nonlinear effect in plas ma waves. The 

study of nonlinear phenomena [17]  in  plasmas is one 

of the most important research topics in plasma 

physics. Formation and propagation of solitary  

waves, periodic waves are very challenging problems 

in p lasma physics. We can study chaotic motion [18] 

of nonlinear waves by considering an external 

perturbation.     

     The basic motive of our paper is to study one 

dimensional quantum hydrodynamic model to 

analyze shock fronts and solitary profile of ion 

acoustic waves in semi classical p lasma, by 

analyzing the plots of the Dispersion relat ion and the 

solutions of the KdV-B equation, and then will carry  

the work forward to analyze the Rogue wave 

formation, by deriving the Non Linear Schrodinger’s 

Equation (NLSE) from the solitary  part¨ of the KdV-

B equation and also study the chaotic motion of 

nonlinear waves and plotting its solution for further 

analysis. 

2. Basic formulation 

 

A. Governing Equations 

Following are the governing equations we are going  

to use for our study. 

𝜕(𝑛𝑒)𝜕𝑡 + 𝜕(𝑛𝑒𝑢𝑒)𝜕𝑥 = 0   (1) 

𝜕(𝑛𝑖 )𝜕𝑡 + 𝜕(𝑛𝑖 𝑢𝑖)𝜕𝑥 = 0   (2) 

( 𝜕𝜕𝑡 + 𝑢𝑖 𝜕𝜕𝑥) (𝑢𝑖𝛾𝑖 ) = 1𝑚𝑒 (𝑄𝑖 𝜕𝜙𝜕𝑥 + 𝜂𝑖 𝜕2𝑢𝜕𝑥2 ) (3) 

0 = 1𝑚𝑒 [𝑄𝑒 𝜕𝜙𝜕𝑥 − 1𝑛𝑒 𝜕𝑃𝑒𝜕𝑥 + ћ22𝑚𝑒 𝜕𝜕𝑥 ( 1√𝑛𝑐 𝜕2√𝑛𝑐𝜕𝑥2 ) +                                                             𝑄𝑒 𝜕(𝑈𝑥𝑐,𝑐)𝜕𝑥 ] (4) 

𝜕2𝜙𝜕 𝑥2 = 4𝜋(𝑄𝑒𝑛𝑒 + 𝑄𝑖𝑛𝑖 )   (5) 

Here, Uxc,e: Exchange Correlation term of  

Electrons; Qe: e (Charge of electron= 1.6 × 10
−19

) ; 

Qi : −zie 

B. Normalization scheme x → xωc/VFh;t → tωc;φ → eφ/kBTFh; nj→nj/nj0; 

ni→ni/ni0; uj→ uj/VFh 

𝑉𝐹ℎ = √2𝑘𝐵𝑇𝐹𝑒ℎ /𝑚𝑒  ;  𝜔𝑒𝑐 = √4𝜋𝑛𝑒𝑐0𝑒2 /𝑚𝑒  

Using these above normalizat ion schemes, 

equation (1) to (5) can be written as: 

 

2.1 Electrostatic waves 

 𝜕(𝑛𝑒)𝜕𝑡 + 𝜕(𝑛𝑒𝑢𝑒)𝜕𝑥 = 0   (6) 𝜕(𝑛𝑖)𝜕𝑡 + 𝜕(𝑛𝑖𝑢𝑖 )𝜕𝑥 = 0    (7) ( 𝜕𝜕𝑡 + 𝑢𝑖 𝜕𝜕𝑥) (𝑢𝑖𝛾𝑖 ) =  −𝜇 𝜕𝜙𝜕𝑥 + 𝜂𝑖 𝜕2𝑢𝑖𝜕𝑥2  (8) 0 = 𝜕𝜙𝜕𝑥 − 1𝑛𝑒 𝜕𝑃𝑒𝜕𝑥 + 𝐻22 𝜕𝜕𝑥 [ 1√𝑛𝑒 𝜕2√𝑛𝑒𝜕𝑥2 ] − 𝜆1𝑒𝑛𝑒−23 𝜕𝑛𝑒𝜕𝑥 +
                                                         𝜆2𝑒𝑛𝑒−13 𝜕𝑛𝑒𝜕𝑥  (9) 𝜕2𝜙𝜕 𝑥2 = (𝑛𝑒 − 𝑛𝑖 ) (10) 

Where, H is Quantum Diffraction 

Parameter; 

And, 𝜆1𝑒 = 1.66𝑒2 𝑛𝑒0133𝜀𝐸𝐹𝑒 ; 𝜆 2𝑒 = 3.77ℏ2 𝑛𝑒023𝑚𝑒 𝐸𝐹𝑒 ;  𝜇 = 𝑚𝑒𝑚𝑖  

 

2.2 Ion-acoustic waves 

 𝜕(𝑛𝑖)𝜕𝑡 + 𝜕(𝑛𝑖𝑢𝑖 )𝜕𝑥 = 0    (11) ( 𝜕𝜕𝑡 + 𝑢𝑖 𝜕𝜕𝑥) (𝑢𝑖𝛾𝑖 ) =  −𝜇 𝜕𝜙𝜕𝑥 + 𝜂𝑖 𝜕2𝑢𝑖𝜕𝑥2   (12) 𝜕2𝜙𝜕 𝑥2 = (𝑛𝑒 − 𝑛𝑖 )                                               (13) 

 

We use the stretching expression: 

ξ = ε1/2 (x − V0t);τ = ε3/2t  ;η = ε1/2η0 

𝜕𝜕𝑥 ≡ 𝜀1 2⁄ 𝜕𝜕𝜉  ;         𝜕2𝜕𝑥2 ≡ 𝜀 𝜕2 𝑦𝜕𝜉2  ; 
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𝜕𝜕𝑡 ≡  −𝜀1 2⁄ 𝑉0 𝜕𝜕𝜉 + 𝜀3 2⁄ 𝜕𝜕𝜏  

 

C. Classical pressure term 

 

Pj= njkBTj 

D. The perturbation expansions 

 

[𝑛𝑗𝑢𝑗𝜙] = [ 1𝑢0𝜙0] + 𝜀 [ 𝑛𝑗(1)𝑢𝑗(1)𝜙 (1) ] + 𝜀2 [𝑛𝑗(2)𝑢𝑗(2)𝜙 (2) ] +  𝜀3 [𝑛𝑗(3)𝑢𝑗(3)𝜙 (3) ] + . .. 
𝑛𝑗 = 1 + 𝜀𝑛𝑗(1) + 𝜀2𝑛𝑗(2) + 𝜀3𝑛𝑗(3) + . .. 𝑢𝑗 = 𝑢0 + 𝜀𝑢𝑗(1) + 𝜀2𝑢𝑗(2) + 𝜀3𝑢𝑗(3) + . .. 𝜙 = 𝜙0 +  𝜀𝜙 (1) +  𝜀2𝜙 (2) + 𝜀3𝜙 (3) +. .. 
 

 3. The Dispersion relation 

 

For deriving the d ispersion relation o f both type of 

waves, we substitute the perturbation expansions into 

the normalized  sets of equations, and then linearizing  

and assuming that all the quantities vary simple 

harmonically as e
i(kx−wt)

; and separating the real and 

imaginary parts, for normalized wave frequency ω 
and k, we get the equation as: 

3.1. Electrostatic waves 

 𝜔 = 𝑢0𝑘 + 𝑖 (𝑘2 √𝑘2(𝜂𝑖2 − 𝜇𝐻2) − 4𝜇(𝜆 2𝑒 − 𝜆 1𝑒)
− 𝜂𝑖2𝑘22 ) 

                                                                       (14) 

When𝑘 < √4𝜇 (𝜆2𝑒−𝜆1𝑒)(𝜂𝑖2 −𝜇2 𝐻); the real part i.e. the 

Dispersion Relation is: 𝜔𝑟 = 𝑢0𝑘 − 𝑘2 √4𝜇(𝜆 2𝑒 − 𝜆1𝑒) − 𝑘2(𝜂𝑖2 − 𝜇𝐻 2) 

                                                                 (15) 

And the imaginary part i.e. the Damping Relation is: 𝜔𝑖 = − 𝜂𝑖 𝑘22     (16) 

But as soon as k reaches the value, √4𝜇 (𝜆2𝑒−𝜆1𝑒)(𝜂𝑖2 −𝜇2𝐻) 
The real part changes to: 

 𝜔𝑟 = 𝑢0𝑘    (17) 

 

And imaginary part becomes: 

 𝜔𝑖 = (𝑘2 √𝑘2(𝜂𝑖2 − 𝜇𝐻2) − 4𝜇(𝜆 2𝑒 − 𝜆 1𝑒) −𝜂𝑖2 𝑘22 )(18) 

 

3.2. Ion-Acoustic waves 

 𝜔 = (𝑢0𝑘 + √4𝜇−𝜂𝑖2 𝑘42 ) − 𝑖 𝜂𝑖 𝑘22                      (19) 

Where, at the first glance, the real part appears to be, 

 𝜔𝑟 = 𝑢0𝑘 + √4𝜇−𝜂𝑖2 𝑘42                                       (20) 

And the imaginary part appears to be, 𝜔𝑖 = − 𝜂𝑖 𝑘22                                                       (21) 

But, on closure inspection, we find that, (20) and  

(21) retain their expressions only as long as 𝑘 ≤ √4𝜇𝜂𝑖24  

As soon as k becomes greater than √4𝜇𝜂𝑖24
 , (20) and 

(21) changes to:𝜔𝑟 = 𝑢0𝑘   (22) 

And, 𝜔𝑖 = √𝜂𝑖2 𝑘4 −4𝜇2 − 𝜂𝑖 𝑘22    (23) 

The real part of (14) and (19) g ives us the 

dispersion relation, and the imaginary part of (14) 

and (19) gives us the damping relation. 

4. The KdV-Burgers equation 

 

By substituting the stretching expressions and the 

perturbation terms in the normalized equations, and 

by using mathematical computational methods and 

collecting the coefficients of similar powers of, we 

get these equations: 
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4.1. Electrostatic wave 

𝜕𝑛𝑖(1)𝜕𝜏 + 𝑛𝑖(1) 𝜕𝑢𝑖(1)𝜕𝜉 + 𝑢𝑖(1) 𝜕𝑛𝑖(1)𝜕𝜉 = (𝑉0 − 𝑢0) 𝜕𝑛𝑖(2)𝜕𝜉 −𝜕𝑢𝑖(2)𝜕𝜉      (24) 

 𝑢𝑖(1) = (𝑉0 − 𝑢0)𝑛𝑖(1)
(25) 𝜙 (1) = (𝑉0 − 𝑢0) (1 + 3𝑢022𝑐2 ) 𝑢𝑖(1)

  (26)  𝜙 (1) = [1 − (𝜆 1𝑒 + 𝜆 2𝑒)]𝑛𝑒(1)
  (27) 

 𝐻24 𝜕3𝑛𝑒(1)𝜕𝜉3 + (𝜆 1𝑒 + 𝜆 2𝑒 − 1) 𝜕𝑛𝑒(2)𝜕𝜉 − (23 𝜆 1𝑒 −                                          13 𝜆 2𝑒) 𝑛𝑒(1) 𝜕𝑛𝑒(1)𝜕𝜉 = 0(28) 

𝜕2𝜙(1)𝜕 𝜉2 = (𝑛𝑒(2) − 𝑛𝑖(2) )(29) 

 

4.2 Ion- Acoustic Waves 

  𝑢𝑖(1) = (𝑉0 − 𝑢0) (30) 

 𝜕𝑛𝑖(1)𝜕𝜏 + 𝑛𝑖(1) 𝜕𝑢𝑖(1)𝜕𝜉 + 𝑢𝑖(1) 𝜕𝑛𝑖(1)𝜕𝜉 = (𝑉0 − 𝑢0) (𝜕𝑛𝑖(2)𝜕𝜉 −                                                                        𝜕𝑢𝑖(2)𝜕𝜉 )(31) 𝜙 (1) = (𝑉0−𝑢0)𝜇 (1 + 3𝑢022𝑐2 ) 𝑢𝑖(1)
(32) 

 𝜕2𝜙(1)𝜕 𝜉2 = −𝑛𝑖(2)
(33) 

 𝜕2𝜙(2)𝜕 𝜉2 = −𝑛𝑖(3)
(34) 

 

Solving them by substitution, elimination and 

reductive perturbation technique, we obtain the 

following KdVB equation of the form: 

𝜕𝜙𝜕𝜏 + 𝑁𝜙 𝜕𝜙𝜕𝜉 + 𝐷 𝜕3𝜙𝜕 𝜉3 − 𝑅 𝜕2𝜙𝜕 𝜉2 = 0(35) 

Where, 

N= Nonlinear coefficient 

D= Dispersive coefficient 

R= Viscous coefficient 

As the stream velocity (v0) is <<velocity of light (c);  

thus, neglecting the relativ istic terms we get the 

expressions of coefficients as: 

Electrostatic waves 

𝑁 = ( 𝐵𝐷33+ 2𝐷1 𝐷3+𝐴𝐶𝐷23)( 1𝐷3𝐴+ 1𝐷1)                    (36) 

𝐷 = (1− 𝐻24𝐷22)( 1𝐷3𝐴+ 1𝐷1)                (37)                             

𝑅 = 𝜂0𝐷32 ( 1𝐷3𝐴+1𝐷1 )                                (38)            

Where, 

  𝐷1 = (𝑉0 − 𝑢0)2𝜇  𝐷2 = [1 − (𝜆 1𝑒 + 𝜆 2𝑒)] 𝐷3 = (𝑉0 − 𝑢0) 𝐴 = (𝑉0 − 𝑢0) 𝐵 = 1 𝐶 = (23 𝜆1𝑒 − 13 𝜆 2𝑒) 𝑢𝑒(1) = (𝑉0 − 𝑢0)𝑛𝑒(1)
 

 

Where 𝜆1𝑒 = 1.66𝑒2 𝑛𝑒0133𝜀𝐸𝐹𝑒 ;  𝜆 2𝑒 = 3.77ℏ2 𝑛𝑒023𝑚𝑒 𝐸𝐹𝑒 ;  𝜇 = 𝑚𝑒𝑚𝑖  

 

For Ion-Acoustic Waves: 𝑁 = 3𝜇2(𝑉0 −𝑢0)                                        (39)          𝐷 = (𝑉0 −𝑢0)32𝜇                                                      (40) 𝑅 = 𝑛02                                                               (41) 

    

The solution of the KdVB equations is given by: 𝜙 = 12𝐷𝑁 [1 − tanℎ2 (𝜉)]  −  36𝑅15𝑁 tanℎ(𝜉)         (42) 

We see, that the solution contains two parts, 

 

The first part signifies the solitary  part of the wave, 

and the second part refers to the shock profiles. We 

notice that the coefficient of 2nd part contains R in 

the numerator, which is directly proportional to η0. 

Thus, we can say, that with increase in viscosity, the 

shock profiles become more prominent. 
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From equation (38) and (41), it is evident, that 

equation (35) reduces to the KdV equation, given by: 𝜕𝜙𝜕𝜏 + 𝑁𝜙 𝜕𝜙𝜕𝜉 + 𝐷 𝜕3𝑦𝜕 𝜉3 = 0 (43) When the viscosity 

term η0 becomes zero, thus making R=0 in equation 

(35), giving equation (43), which is nothing but the 

KdV equation, and displays the solitary profiles of 

the waves. 

[During graphical analysis, η0 has been considered η.] 

5. Non-Linear Schrodinger’s equation and 

formation of rogue waves 

 

For studying the generation of RW, we will setup 

Non-Linear Schrodinger Equation (NLSE). NLSE 

governs the dynamics of a wavepacket (envelope) 

such that dispersive effects are balanced by non- 

linear effects. Equation (43) can be extended to setup 

NLSE as shown below. Any field variable can be 

expanded in terms of Fourier series as follows: 𝐹 = 𝜀2𝐹 +  ∑ 𝜀𝑠(𝐹𝑠𝑒𝑖𝑠𝜓 + 𝐹𝑠∗ 𝑒−𝑖𝑠𝜓)∞𝑠=1        (44) 

Where, F is the field variab le, 𝜀 is the smallness 

parameter, and ψ is the phase factor. Now, using this 

equation we can expand the potential in equation (43) 

as, 𝜙 = 𝜀2𝜙0 + 𝜀𝜙1𝑒𝑖𝜓 + 𝜀𝜙1∗ 𝑒−𝑖𝜓 + 𝜀2𝜙2𝑒2𝑖𝜓 +𝜀2𝜙2∗ 𝑒−2𝑖𝜓 +. ..(45) 

The first harmonics 𝜙1  and second harmonics 𝜙2 

can be further expanded respectively: 𝜙1 = 𝜙1(1) + 𝜀𝜙1(2) + 𝜀𝜙1(3) +. .. (46) 𝜙2 = 𝜙2(1) + 𝜀𝜙2(2) + 𝜀𝜙2(3) +..(47) 

Now, we use the change in variables as: 𝜌 = 𝜀|𝜉 − 𝑐𝜏|(48) 

𝜃 = 𝜀2𝜏 (49) 

Therefore, 
𝜕𝜕𝜏 = −𝑖𝑠𝜔 − 𝜀𝑐 𝜕𝜕𝜌 + 𝜀2 𝜕𝜕𝜃 and

𝜕𝜕𝜉 = 𝑖𝑠𝑘 +𝜀 𝜕𝜕𝜌   ; 

Where, s is the order of the wave equation (s = 1 for 

1st order). By inserting the above terms in KdV 

Burger’s equation after algebraic calculations we get 

the NLSE given by, 

 𝑖 𝜕𝜙𝜕𝜃 + 𝑃 𝜕2𝜙𝜕𝜌2 = −𝑄𝜙𝜙∗𝜙(50) 

Where, P= −3kD and𝑄 = − 𝑁26𝐷𝑘  

 

The solution of equation (49) we get as, 𝜙(𝜌, 𝜃) = √2𝑃𝑄 [ 4(1+4𝑖𝑃𝑄)1+16𝑃2𝑄2+4𝜌2 − 1] 𝑒−2𝑖𝑃𝜃(51) 

 

By varying the variab les ρ and θ we can get the rogue 

wave solution. 

 

 

6. Dynamics of the system 

Now we analyse the response of the ion acoustic 

system under normal conditions and under small 

periodic perturbations, its stability and its response to 

change in in itial condit ions, leading to its chaotic 

behavior. 

6.1 Unperturbed system 

Initially, the system is not under the influence of any  

external effects. Thus, the system is unperturbed. 

From equation (35) we get the KdVB equation, as  𝜕𝜙𝜕𝜏 + 𝑁𝜙 𝜕𝜙𝜕𝜉 + 𝐷 𝜕3 𝜙𝜕𝜉3 − 𝑅 𝜕2 𝜙𝜕𝜉2 = 0 

Using the transformation  𝛽 = 𝜉 − 𝑀𝜏 (where M is  

the mach number, i.e. the phase velocity.) we get, 

−𝑀 𝜕𝜙𝜕𝛽 + 𝑁𝜙 𝜕𝜙𝜕𝛽 + 𝐷 𝜕3𝜙𝜕𝛽3 − 𝑅 𝜕2𝜙𝜕𝛽2 = 0  (52) 

Integrating the equation, w.r.t.,we get: 

𝐷 𝜕2𝜙𝜕𝛽2 = 𝑅 𝜕𝜙𝜕𝛽 + 𝑀𝜙 − 𝑁  𝜙22   (53) 

Now, 

If  𝑧 = 𝜕𝜙𝜕𝛽 ,       (54) 

Then equation (52) becomes, 

𝐷 𝜕𝑧𝜕𝛽 = 𝑅z + 𝑀𝜙 − 𝑁  𝜙22    (55) 
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Solving equation (54) and (55) numerically, and  

studying its various plots, we can analyse the 

unperturbed system. 

6.2 Perturbed system 

We consider a s mall periodic perturbation force 𝑓0 cos(𝜔𝜂). Thus equation (55) gets modified as, 

𝐷 𝜕𝑧𝜕𝛽 = 𝑅z + 𝑀𝜙 − 𝑁  𝜙22 + 𝑓0 cos(𝜔𝛽) (56) 

Solving equation (54) and (56) numerically, and  

studying it’s various plots, we can analyse the 

perturbed system. 

7. Analytical Studies 

 

A. From the dispersion relation, of the 

Electrostatic waves i.e.(14) , (15) , (16) , (17) and, 

(18) ; we get the following 2-D plots: 

 
Fig. 1: Dispersion Relation plot of ESW for changing 

u0 (u0= stream velocity), at constant η and µ. 

 
Fig. 2: Damping plot of ESW for changing u0(u0= 

stream velocity), at constant η and µ. 

We see, from the d ispersion relation curve of 

electrostatic waves, that almost from the beginning  

only, the DR plot attains constant linear growth, 

having constant slope u0 (i.e. The stream velocity of 

the plasma particles). 

From the damping plot also, we find, that initially  

there exists a changing non-zero damping effect, 

which exists for a very short time, after which the 

damping effects becomes constant, tending to zero. 

B. From the dispersion relation of the Ion–
acoustic waves(19) , (20) , (21) , (22) and (23) ; we 

get the following 2-D plots: 
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Fig. 3: Dispersion Relation p lot of IAW for changing 

η (η = coefficient of viscosity), at constant µ. 

 
Fig. 4: Dispersion Relation plot of IAW for changing 

µ (µ = rat io between the mass of electron and the 

mass of ion), at constant η. 

 

 

Analyzing the plots of the DR of Ion-acoustic waves, 

we find that the graph consists of two parts, one non-

linear and one linear part. We observe, that the 

nonlinear part arises dueto the square-root term 

present in the equation, and exists there, till k reaches 

the value√4×𝜇𝜂24
. After that, the graph attains constant 

linear growth. 

If we graphically compute the gradient of the 

linear part , we see that the slope has the value of the 

stream velocity [uo] itself. A lso, the slope is having 

constant value. Thus, we can say, that after a short 

time, the plasma attains a uniform velocity, equal to  

the stream velocity [uo]. i.e . in itially the group 

velocity decreases a bit, but then becomes as same as 

the value of stream velocity. 

 
Fig. 5: Dispersion Relat ion plot of IAW for changing 

u0 (u0= stream velocity), at constant η and µ. 

 
Fig. 6: Damping plot of IAW for changing u0(u0= 

stream velocity), at constant η and µ. 

If we study the damping plot (Fig.6), (obtained from 

the imaginary  part), we find, that initially there exists 

a non-zerodamping effect, which reaches its maxima 

at k= √4×𝜇𝜂24
and then, vanishes sharply, and becomes  

zero. This further confirms our analysis of the 

Dispersion relat ion plot (Fig. 5), and now we can  

correlate the two graphs together. As the damping 

effects increase, the group velocity is supposed to 

decrease, which is seen in the DR graph. Also, as 

soon as the damping effects start decreasing, the 

group velocity is supposed to attain constant value, 

as the plasma now moves with neglig ible hindrances. 

This also is confirmed by the DR graph, as we see, 

the group velocity attains aconstant value u0. 

 

From Fig. 4, we observe, that the initial (starting) 

group velocity increases with increasing value of µ, 
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i.e., the init ial velocity shows a slight increase with 

decreasing value of the mass of ions, (as µ=me/mi ). 

This is quite justifiab le, as ion mobility is inversely 

proportional to the ion mass. 

From Fig.3, we see that, the nonlinear effects, 

decrease with increasing viscosity of the plasma, and 

thus, it is observed that the group velocity attains 

constant value faster in highly viscous plasmas, than 

in lowly viscous plasmas. Now, as density increases 

with viscosity, thus, we can say that as density 

increases, the nonlinear effects dimin ish faster. Th is 

can thus be attributed to the deby length of the 

plasma, which also decreases, on increasing density. 

So, the nonlinearity in the wave velocity is directly  

proportional to the deby length, and thus, we can say 

that the group velocity acquires a constant value 

faster, where the electric potential is neutralized  

faster. 

C. From the solution of KdVB equation, (42) we get 

the following 2-D and 3-D plots for Electrostatic 

Waves and Ion-Acoustic Waves: 

 

Fig. 7 : Plot of the solution of the KdVB equation of 

ESW for changing H (H= Quantum Diffract ion 

Parameter), at constant u0,V0, µ and η. 

Fig. 8: Plot of the solution of the KdVB equation of 

ESW for changing H (H= Quantum Diffraction 

Parameter), at constant u0,V0, µ and η. 

Fig. 9: Plot of the solution of the KdVB equation of 

ESW of different viscosity plasmas, for changing µ 

(µ = ratio between the mass of electron and the mass 

ofion), at constant u0,V0and H. 

Fig. 10: Plot of the solution of the KdVB equation of 
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ESW of both highly and lowly viscous plasma, for 

changing u0 (u0= stream velocity), at constant 

V0,µand H. 

 

Fig. 11(a): Solitary profiles (2D) in plasma of ESW, 

for changing η (η = coefficient of viscosity), at 

constant u0,V0, µ and H. 

 

 

Fig. 11(b): Solitary profiles (3D) in plas ma of ESW, 

for changing η (η = coefficient of viscosity), at 

constant u0,V0, µ and H. 

 

 

 

Fig. 12: Solitary profiles in plas ma of ESW, for 

changing H (H= Quantum Diffract ion Parameter), at  

constant u0,V0, η and µ. 

 

 

Fig. 13: So litary profiles in  plasma of ESW, for 

changing u0(u0 = stream velocity), at constant V0, µ, η 
and H. 

 

 

 



The African Review of Physics (2020) 15 
Special Issue on Plasma Physics: 009 
 

 

84 

 

 

Fig. 14: Plot of the solution of the KdVB equation of 

IAW of highly viscous plasma, for changing η (η = 

coefficient of viscosity), at constant u0,V0and µ. 

 

Fig. 15: Plot of the solution of the KdVB equation of 

IAW of highly viscous plasma, for changing µ (µ = 

ratio between the mass of electron and the mass of 

ion), at constant u0,V0and η. 

 

Fig. 16: Plot of the solution of the KdVB equation of 

IAW of highly viscous plasma, for changing u0(u0= 

stream velocity), at constant V0 ,µand η . 

 

Fig. 17: Plot o f the solution of the KdVB equation of 

IAW of lowly  viscous plasma, for changing u0(u0= 

stream velocity), at constant V0 ,µand eta. 

 

Fig. 18: Solitary profiles in plasma of IAW, for 

changing u0(u0 = stream velocity), at constant V0, µ 

and η. 
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Fig. 19: Solitary profiles in p lasma of IAW, for 

changing V0 (= phase velocity) at constant u0, µand η. 

Fig. 20: So litary p rofiles in p lasma of IAW, for 

changing η (η = coefficient of v iscosity), at constant 

u0,V0and µ. 

 

Fig. 21: Solitary profiles in  plasma of IAW, for 

changing µ (µ = rat io between the mass of electron 

and the mass of ion), at constant u0, V0 and η. 

From the 2D p lots and 3D solitary profiles, of 

ESWs and IAWs, we observe that, 

 

i) The height of the potential peak depends 

mainly on twofactors, one, the difference 

between the phase velocity (V0) and the stream 

velocity (u0), and the second, on µ (i.e., the 

ratio between the mass of electron and the mass 

of ion). 

ii) We observe that the symmetry of the curve gets 

distorted with the increase in coefficient of 

viscosityηi. This can be attributed to the 

increase of the Shock properties in the solitary  

wave. 

We see, that as viscosity increases, which 

increases the density; in comparison to the 

lowly viscous plasmas, in highly v iscous 

plasma, init ially there are a greater number of  

ions, which results in the init ial rise of the 

positive potential with viscosity, on the left of 

the peak. 

Also, the more the height of the potential peak,  

the more will be its interaction with the 

particles. As a result, higher peaked potentials 

repel the ions with more force and attract more  

negative charges, which results in the increase 

of negative potential on the right side of the 

peak. 

Thus, more the abrupt change in the density, 

more will the solitary  profiles tend to shock 

profiles. 

iii) From fig. 15, fig. 19 and fig. 25, we observe, 

that for almost the same value of potential peak,  

the potential width drops rapidly  with  

increasing viscosity. This observation is also 

justified, as, the higher the peak, the more  

number of electrons it will attract, thus resulting 

in the positive potential getting neutralised 

faster. Thus, resulting in the rapid decay of the 

potential peak. 

 

iv)  Also, there is a reversal in the sides of positive 

potential and negative potential, based on, 

whether the phase velocity (V0) is greater than 

the stream velocity (u0) or vice versa. 
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D. From the solution of NLSE of the Ion-Acoustic 

Wave (51), we get the following 2-D and 3-D plots of 

the function for Rogue Waves: 

From the following plots we see that among a 

range of values for θ, (given in the legend of Fig. 22) 

only at one value of θ,the potential suddenly shoots 

up, and gets abnormally high (much higher than the 

peaks of the other solutions). This phenomenon 

depicts the formation of rogue waves, where a wave 

suddenly peaks up to the huge heights. Thus, having 

dangerous impacts on the surrounding systems. 

 

Fig. 22: 2D p lot of the solution of the NLSE(Rogue 

Wave formation) for different values of θ 

 

 

Fig. 23: 3D plot of the solution of the NLSE(Rogue 

Wave formation) 

 

E. From the solution of equation (54), (55) and (56) 

we get the following 2-D and 3-D plots for studying 

the system under unperturbed and perturbed 

conditions: 
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a)  For unperturbed states:

 Fig. 24: Phase trajectory of the unperturbed system, 

(initial conditions in legend), plot of 𝜙 vs z, from 

equation (54) and (55) (M=0.9) 

Fig. 25:Oscillation of the unperturbed system, (init ial 

conditions in legend), p lot of  𝛽 𝑣𝑠 𝜙 , from equation 

(54) and (55) (M=0.9) 

b) For perturbed states: 

 

 

 

Fig. 26: Phase trajectory  of the perturbed system, 

(in itial conditions in legend), p lot of 𝜙  vs z, from 

equation (54) and (56) (M=0.9) 

 

Fig. 27: Oscillation of the perturbed system, (initial 

conditions in legend), p lot of𝛽 𝑣𝑠 𝜙 , from equation 

(54) and (56) (M=0.9) 

 

From these plots of both the systems, we observe the 

following things: 

 

i) In case of the unperturbed system, the trajectory  

doesn’t depend much on the initial conditions, 

except for the starting points. But in case of 

perturbed system, the change / distortion of 

trajectory with respect to the initial conditions 

can be visibly observed. 
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ii) The periodic oscillation of the unperturbed 

system is h ighly systematic, but that of the 

perturbed system is chaotic and distorted. 

 

iii) Although distortion exists in the perturbed 

system, the basic outline (region) of the curve 

remains unaltered.   

iv) The phase trajectory initially appears to orbit 

around some central potential, but gets heavily  

and suddenly deflected outwards, near the end. 

 

Thus, from these observations, we can infer that 

although the system appears to be stable in itially, it  

loses its stability and tend to get chaotic in the long 

run. This might be due to the presence of hidden 

influencing forces, which remain passive initially, 

but gets active after a certain  time, thus making the 

system unstable and chaotic. Thus, this work can be 

extended to the study of Lyapunov exponents, to 

assure the existence of hidden influencers. 

 

7. Conclusions 

From the detailed  study of the plots, we analysed the 

basic properties of the Electrostatic and Ion-Acoustic 

waves in plasma, and noted their behavioral 

dependencies on different parameters like phase 

velocity, stream velocity, viscosity of the plas ma and  

the ratio between mass of electrons and mass of ions. 

We observed that the greater the difference between  

the phase velocity, the h igher the peak. A lso, the 

more v iscous a plas ma, the faster the potential peak 

drops. And the lesser the mass of the ion, more is the 

effect of the potential peak on it. Thus , we can  say, 

that due to the formation of such a positive potential 

peak in the plasma, the ions present are strongly 

repelled  by it and are accelerated to supersonic 

velocities in  a short span of time, g iving rise to shock 

waves in plasma. Also, the more the height of the 

potential peak, the more will be its interaction with  

the particles. As a result, higher peaked potentials 

repel the ions with more force and attract more 

negative charges, which results in the increase of 

negative potential on the right side of the peak. From 

the solution of the nonlinear Schrodinger equation 

(NLSE) we can  confirm the formation and presence 

of Rogue waves in the plas ma. These sudden gigantic 

waves are destructive in nature, as their amplitudes 

are much larger than the ordinary waves, as can be 

seen from the graphical analysis. The occurrence of 

solar flares can also be attributed to similar 

phenomenon like this, where the part icles attain  

supersonic velocities, traveling up all the distance 

between sun and earth, and interfering with the 

Earth’s atmosphere, where they interact with the 

particle present in the ionosphere. Due to collision 

the electrons present in those particles jump to 

excited states, and while returning to their in itial 

states they radiate energy in the form of v isible 

lights, resulting in the formation of auroras. The 

auroras are generally o f green and blue color, which  

indicates the presence of nitrogen in the upper 

atmosphere of Earth. The occurrence of rogue waves 

in sun have got devastating effects on the artificial 

satellites moving in the outer space, as the 

occurrence of these waves are sudden, the satellites 

are unable to withstand or take safety measures 

against their damaging effects. The study of the 

system dynamics in both perturbed and unperturbed 

cases led to the inference that hidden forces may be 

present in the system, which leads to the system 

becoming chaotic and unstable in the long run. 
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