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The basic aim of thisstudy is to use one dimensional Quantum hydrodynamics model to analyse the solitary profiles and shock
fronts of Electrostatic and Ion acoustic waves in semi classical plasma, by using the governing equations to derive the KdV-Burgers
equation with the help of standard perturbation techniques and stretching expressions, and then extending the study of the
nonlinearities of the ion acoustic waves to obtain the Non Linear Schrodinger’s Equation and studying the formation of rogue
waves from it, also analyzing the2D and 3D plots to conclude certain observable and experimental facts. The paper also includes

the study of the dy namics of the systemand it’sbehavioral changes when subjected to small perturbations.

1. Introducti on

There exists a huge number of low and high
frequency modes of propagation of the waves in
plasma. Two such types of modes are the
Electrostatic and Ion acoustic modes. These are low
frequency longitudinal plasma oscillation. The ion
acoustic wave [1, 2] equation describes the dynamics
of collision less plasma made of cold ion and hot
electrons. These waves arise because of the restoring
force imparted by the electrons’ thermal pressure [3],
while the effect of inertia is portrayed due to the
mass of the ions [4, 5]. In case of electrostatic
waves[6], both the electrons and the ions present in
the plasma act as oscillating species, and the wave
propagation is possible because of these
oscillations[7,8]. Many types of nonlinear
electrostatic structures [9] could propagate in
electron-positron plasmas such as solitary shock,
blow-up and rouge waves. Quantum hydrodynamic
model is one of the popular ways to describe the
dynamics of the plasma particles at quantum scales
[10]. This model consists of a set of equations [11]
describing the transport of charge carriers,
momentum and energy in a charged particle system
interacting through a self-consistent electrostatic
potential. Shock wave is a type of propagating
disturbance [12] that moves faster than the speed of
sound. It is generated, when there is an abrupt
change in the temperature, pressure or density of a
medium. It is a discontinuous surface that connects
supersonic and subsonic flow. Entropy increases
when a shock wave flows so the flow is an

75

irreversible process, and the system loses its
equilibrium due to this. Shock waves also appear in
plasma but differ from normal gas due to the
electromagnetic nature of plasma. The shock waves
in plasma are generally generated due to the
interaction between the moving charged particles and
electric or magnetic fields, resulting in the formation
of huge electromagnetic forces, which accelerate the
ions to Supersonic speeds, thus carrying the shock
waves forward. When the flow of plasma is parallel
to the magnetic field, shock wave appears in
governing equation for velocity potential is in
hyperbolic relation with match number [13]. A
soliton (solitary / standing wave) in plasma tends to
become shock fronts with increasing viscosity of the
system. Such shock waves can frequently be seen in
the sun’s corona in the form of solar flares which
shoots the ions with such Supersonic speeds that they
reach the earth’s outer atmosphere and interact with
the planets magnetic fields to generate beautifully
colored patterns called the Aurora Borealis. Rouge
waves are unusually large, unexpected and suddenly
appearing surface waves that can be extremely
dangerous [14, 15]. In Oceanography, rouge waves
are more precisely defined as waves whose height is
more than twice the significant wave height. Rouge
waves can occur in media other than water. The
rouge waves are observed experimentally in plasma
physics, in ocean, in Bose-Einstein condensates, in
super-fluid helium etc. In plasma physics, we study
rouge waves by solving nonlinear Schrodinger (NLS)
equation [16]. Rogue wave suddenly” tend to appear
and then disappear, without any trace. It can be
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created due to nonlinear effect in plasma waves. The
study of nonlinear phenomena [17] in plasmas is one
of the most important research topics in plasma
physics. Formation and propagation of solitary
waves, periodic waves are very challenging problems
in plasma physics. We can study chaotic motion [18]
of nonlinear waves by considering an external
perturbation.

The basic motive of our paper is to study one
dimensional quantum hydrodynamic model to
analyze shock fronts and solitary profile of ion
acoustic waves in semi classical plasma, by
analyzing the plots of the Dispersion relation and the
solutions of the KdV-B equation, and then will carry
the work forward to analyze the Rogue wave
formation, by deriving the Non Linear Schrodinger’s
Equation (NLSE) from the solitary part” of the Kd V-
B equation and also study the chaotic motion of
nonlinear waves and plotting its solution for further
analysis.

2. Basic formulation

A. Governing Equations

Following are the governing equations we are going
to use for our study.
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Using these above normalization schemes,
equation (1) to (5) can be written as:
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Where, H is Quantum Diffraction
Parameter;
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C. Classical pressure term
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D. The perturbation expansions
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3. The Dispersion relation

For deriving the dispersion relation of both type of
waves, we substitute the perturbation expansions into
the normalized sets of equations, and then linearizing
and assuming that all the quantities vary simple
harmonically as . and separating the real and
imaginary parts, for normalized wave frequency

and k, we get the equation as:

3.1. Electrostatic waves
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Dispersion Relation is:
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And the imaginary part i.e. the Damping Relation is:
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The real part changes to:
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Where, at the first glance, the real part appears to be,
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And the imaginary part appears to be,
L
w = -1 1)

But, on closure inspection, we find that, (20) and

(21) retain their expressions only as long as k < 4\/::?

As soon as k becomes greater than* 4—’;, (20) and
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The real part of (14) and (19) gives us the
dispersion relation, and the imaginary part of (14)
and (19) gives us the damping relation.

4. The KdV-Burgers equation

By substituting the stretching expressions and the
perturbation terms in the normalized equations, and
by using mathematical computational methods and
collecting the coefficients of similar powers of, we

get these equations:
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4.1. Electrostatic wave As the stream velocity (vo) is < <velocity of light (¢);
thus, neglecting the relativistic terms we get the
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Solving them by substitution, elimination and k= 2 S

reductive perturbation technique, we obtain the

following KdVB equation of the form: The solution of the KAVB equations is given by:

2 0 21— tanh? ()] - >tanh(@)  (@2)
+ qb +Da§3—R¥=O(3S)
We see, that the solution contains two parts,
Where The first part signifies the solitary part of the wave,

and the second part refers to the shock profiles. We
notice that the coefficient of 2nd part contains R in
the numerator, which is directly proportional to 7.
Thus, we can say, that with increase in viscosity, the
shockprofiles become more prominent.

N= Nonlinear coefficient
D= Dispersive coefficient
R= Viscous coefficient
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From equation (38) and (41), it is evident, that
equation (35) reduces to the KdV equation, given by:

+N¢) +Da =0 (43) When the viscosity

3
term 7o becomes zero, thus making R=0 in equation
(35), giving equation (43), which is nothing but the
KdV equation, and displays the solitary profiles of
the waves.

[During graphical analysis, 7o has been considered 7.]

5. Non-Linear Schrodinger’s
formation of rogue waves

equation and

For studying the generation of RW, we will setup
Non-Linear Schrodinger Equation (NLSE). NLSE
governs the dynamics of a wavepacket (envelope)
such that dispersive effects are balanced by non-
linear effects. Equation (43) can be extended to setup
NLSE as shown below. Any field variable can be
expanded in terms of Fourier series as follows:

F=eF+ ). e(Ee" +Fe ™) 44

Where, F is the field variable, €is the smallness
parameter, and y is the phase factor. Now, using this
equation we can expand the potential in equation (43)
as,

P =P, +ep e +epie™™ + 2,2V +
e2pye?V 4. (45)

The first harmonics ¢p; and second harmonics ¢,

can be further expanded respectively:
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Where, s is the order of the wave equation (s = 1 for
Ist order). By inserting the above terms in KdV
Burger’s equation after algebraic calculations we get
the NLSE given by,
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Where, P= —3kD andQ = — 6’;’)—]{

The solution of equation (49) we getas,
4(1+4iPQ) ] —2iPe
$(p,0) = \’ [1+16P2Q2+4p2 16D

By varying the variables p and 6 we can get the rogue
wave solution.

6. Dynamics of the system

Now we analyse the response of the ion acoustic
system under normal conditions and under small
periodic perturbations, its stability and its response to
change in initial conditions, leading to its chaotic
behavior.

6.1 Unperturbed system

Initially, the system is not under the influence of any
external effects. Thus, the systemis unperturbed.

From equation (35) we get the KdVB equation, as

Po e
or TNt P o TR =0

Using the transformation f = & — Mt (where M is
the mach number, i.e. the phase velocity.) we get,

2

ap
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Integrating the equation, w.r.t.,we get:
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Now,
=%
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9z _ N
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Solving equation (54) and (55) numerically, and
studying its various plots, we can analyse the
unperturbed system.

6.2 Perturbed system

We consider a small periodic perturbation force
fo cos(wn). Thus equation (55) gets modified as,

2
DZ—Z = Rz+ M¢p — NL-+ f, cos(@p)  (56)

Solving equation (54) and (56) numerically, and
studying it’s various plots, we can analyse the
perturbed system.

7. Analytical Studies

A. From the dispersion relation, of the
Electrostatic waves i.e.(14) , (15) , (16) , (17) and,
(18); we get the following 2-D plots:

Dispersion Relation Plot

3.51

3.0

0 1 2 3 4 5 6 7

Fig. 1: Dispersion Relation plot of ESW for changing
ug (uo=stream velocity), at constant # and u.

80

Damping Relation Plot
0.3

0.2 uw0=0.5

2E-3 4E-3 6E

HF1E-6

Fig. 2: Damping plot of ESW for changing uo(uo=
stream velocity), at constant # and u.

We see, from the dispersion relation curve of
electrostatic waves, that almost from the beginning
only, the DR plot attains constant linear growth,
having constant slope ug (i.e. The stream velocity of
the plasma particles).

From the damping plot also, we find, that initially
there exists a changing non-zero damping effect,
which exists for a very short time, after which the
damping effects becomes constant, tending to zero.

B. From the dispersion relation of the lon—
acoustic waves(19) , (20) , (21), (22) and (23) ; we
get the following 2-D plots:
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Fig. 3: Dispersion Relation plot of IAW for changing
n (n = coefficient of viscosity), at constant u.

Dispersion Relation plot.
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Fig. 4: Dispersion Relation plot of IAW for changing
u (u = ratio between the mass of electron and the
mass of ion), at constant 7.

Analyzing the plots of the DR of Ion-acoustic waves,
we find that the graph consists of two parts, one non-
linear and one linear part. We observe, that the
nonlinear part arises dueto the square-root term
present in the equation, and exists there, till k reaches

4 [4x .
the value —Zﬂ After that, the graph attains constant
\j n

linear growth.

If we graphically compute the gradient of the
linear part, we see that the slope has the value of the
stream velocity [u,] itself. Also, the slope is having
constant value. Thus, we can say, that after a short
time, the plasma attains a uniform velocity, equal to
the stream velocity [u,]. ie. initially the group
velocity decreases a bit, but then becomes as same as
the value of stream velocity.
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Dispersion relation plot.
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Fig. 5: Dispersion Relation plot of IAW for changing
ug (uo=stream velocity), at constant n and .

Damping plot.
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Fig. 6: Damping plot of IAW for changing uq(uy=
stream velocity), at constant # and 4.

If we study the damping plot (Fig.6), (obtained from
the imaginary part), we find, that initially there exists
a non-zerodamping effect, which reaches its maxima

,4
at k:4 %land then, vanishes sharply, and becomes
n

zero. This further confirms our analysis of the
Dispersion relation plot (Fig. 5), and now we can
correlate the two graphs together. As the damping
effects increase, the group velocity is supposed to
decrease, which is seen in the DR graph. Also, as
soon as the damping effects start decreasing, the
group velocity is supposed to attain constant value,
as the plasma now moves with negligible hindrances.
This also is confirmed by the DR graph, as we see,
the group velocity attains aconstant value u.

From Fig. 4, we observe, that the initial (starting)
group velocity increases with increasing value of y,
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i.e., the initial velocity shows a slight increase with
decreasing value of the mass of ions, (as u=m./m; ).
This is quite justifiable, as ion mobility is inversely
proportional to the ion mass.

From Fig.3, we see that, the nonlinear effects,
decrease with increasing viscosity of the plasma, and
thus, it is observed that the group velocity attains
constant value faster in highly viscous plasmas, than
in lowly viscous plasmas. Now, as density increases
with viscosity, thus, we can say that as density
increases, the nonlinear effects diminish faster. This
can thus be attributed to the deby length of the
plasma, which also decreases, on increasing density.
So, the nonlinearity in the wave velocity is directly
proportional to the deby length, and thus, we can say
that the group velocity acquires a constant value
faster, where the electric potential is neutralized
faster.

C. From the solution of KdVB equation, (42) we get
the following 2-D and 3-D plots for Electrostatic
Waves and lon-Acoustic Waves:

Plot for changing H.
(V0=0.7, u0=1.3, p=0.0005, n=2.0 )

----- ¢1 (H=1)
—-= 91 (H=1.5)

$1 (H=2.25)
— 1 (H=3)

a8

—4 4

Fig. 7: Plot of the solution of the KdVB equation of
ESW for changing H (H= Quantum Diffraction
Parameter), at constant ug,Vy,u and 7.
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Plot for changing H.
(V0=0.7, u0=1.3, p=0.0005, n=0.5)

----- 1 (H=1)
34 —-- $1 (H=1.5)
¢1 (H=2.25)
— §1(H=3)

St

-4 -2 0 2 4

Fig. 8: Plot of the solution of the KdVB equation of
ESW for changing H (H= Quantum Diffraction
Parameter), at constant ug, Vy,u and 7.

Plot for changing p.
(V0=0.7, u0=1.3, H=2)
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Fig. 9: Plot of the solution of the KdVB equation of
ESW of different viscosity plasmas, for changing u
(u = ratio between the mass of electron and the mass
ofion), at constant ug, Vyand H.

Plot for changing u0 (For both low and high Viscous Plasma).
(V0=0.7, u=0.0005, H=3 )

— 1 (u0=1,n=0.3)
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Fig. 10: Plot of the solution of the KdVB equation of
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ESW of both highly and lowly viscous plasma, for
changing u (uo= stream velocity), at constant
Vo,uand H.

Plot for changing n.
(V0=0.7, u0=1.3, p=0.0005)

------ 01 (n=0.2)

157 —= 91(n=1)
\ — 91(0n=2)

5.0 S g — $1(n=3.5)

e

e 0.0 e oot
\ .
NS
. =

\

Fig. 11(a): Solitary profiles (2D) in plasma of ESW,
for changing # (n = coefficient of viscosity), at
constant ug, Vo, u and H.

KDVB surface plot
(changing n; H=3, u=0.0005, u0=1.3, V0=0.7 )

Fig. 11(b): Solitary profiles (3D) in plasma of ESW,
for changing 7 (3 = coefficient of viscosity), at
constant ug, Vo, u and H.

KDVB surface plot
(changing H; n=0.5, u=0.0005, u0=1.3, V0=0.7 )

Fig. 12: Solitary profiles in plasma of ESW, for
changing H (H= Quantum Diffraction Parameter), at
constant ug, Vy, 77 and u.

KDVB surface plot
(changing u0; H=3, u=0.0005, n=0.3, V0=0.7 )

Fig. 13: Solitary profiles in plasma of ESW, for
changing uo(uo = stream velocity), at constant Vy, u,
and H.



The African Review of Physics (2020) 15
Special Issue on Plasma Physics: 009

(u0=0.9, V0=0.7, p=0.0005 )
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6000 LN -=- $2 (n=3)
S 8 | 93 (n=5)
g —-= ¢4 (n=7)
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B
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)
i
8
0 "..
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~ oA

Fig. 14: Plot of the solution of the KdVB equation of
TAW of highly viscous plasma, for changing n (n =
coefficient of viscosity), at constant ug, Vopand u.

(n=5, V0=0.7, u0=0.9 )
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8000 -
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4000 -
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Fig. 15: Plot of the solution of the KdVB equation of
TAW of highly viscous plasma, for changing u (u =
ratio between the mass of electron and the mass of
ion), at constant ug, Vpand 7.

(n=5, V0=0.7, u=0.0005 )
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Fig. 16: Plot of the solution of the Kd VB equation of
IAW of highly viscous plasma, for changing uo(uo=
stream velocity), at constant Vg uand 7 .

Low viscocity plasma.
(u=0.0005, V0=0.7, n=0.8 )
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Fig. 17: Plot of the solution of the Kd VB equation of
IAW of lowly viscous plasma, for changing uo(uo=
stream velocity), at constant V; uand eta.

KDVB surface plot
(changing u0; n=5, V0=0.7, u=0.0005)

30000
25000
20000
15000
10000
5000

1.0

0.5
= 0.4

Fig. 18: Solitary profiles in plasma of IAW, for

changing uo(uo = stream velocity), at constant Vy,u
and 7.
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(changing VO; n=5, u0=0.9, u=0.0005 )

Fig. 21: Solitary profiles in plasma of IAW, for

changing u (u = ratio between the mass of electron
and the mass of ion), at constant ug, Vyand 7.
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Fig. 19: Solitary profiles in plasma of IAW, for if)
changing V, (= phase velocity) at constant ug,uand 7.

(changing n; VO=0.7, u0=0.9, u=0.0005 )

Fig. 20: Solitary profiles in plasma of IAW, for
changing 7 (n = coefficient of viscosity), at constant
uop, Voand,u.

(changing y; n=5, u0=0.9, V0=0.7 )
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30000 From the 2D plots and 3D solitary profiles, of
25000 ESWs and IAWs, we observe that,

The height of the potential peak depends
mainly on twofactors, one, the difference
between the phase velocity (V) and the stream
velocity (ug), and the second, on u (i.e., the
ratio between the mass of electron and the mass
of ion).

We observe that the symmetry of the curve gets
distorted with the increase in coefficient of
viscosityzn;. This can be attributed to the
increase of the Shock properties in the solitary
wave.

We see, that as viscosity increases, which
increases the density; in comparison to the
lowly viscous plasmas, in highly viscous
plasma, initially there are a greater number of
ions, which results in the initial rise of the
positive potential with viscosity, on the left of
the peak.

Also, the more the height of the potential peak,
the more will be its interaction with the
particles. As a result, higher peaked potentials
repel the ions with more force and attract more
negative charges, which results in the increase
of negative potential on the right side of the
peak.

Thus, more the abrupt change in the density,
more will the solitary profiles tend to shock
profiles.

From fig. 15, fig. 19 and fig. 25, we observe,
that for almost the same value of potential peak,
the potential width drops rapidly with
increasing viscosity. This observation is also
justified, as, the higher the peak, the more
number of electrons it will attract, thus resulting
in the positive potential getting neutralised
faster. Thus, resulting in the rapid decay of the
potential peak.

Also, there is a reversal in the sides of positive
potential and negative potential, based on,
whether the phase velocity (Vy) is greater than
the stream velocity (i) or vice versa.
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D. From the solution of NLSE of the lon-Acoustic
Wave (51), we get the following 2-D and 3-D plots of
the function for Rogue Waves:

From the following plots we see that among a
range of values for 6, (given in the legend of Fig. 22)
only at one value of the potential suddenly shoots
up, and gets abnormally high (much higher than the
peaks of the other solutions). This phenomenon
depicts the formation of rogue waves, where a wave
suddenly peaks up to the huge heights. Thus, having
dangerous impacts on the surrounding systems.

1e10 Rogue wave plot

— =20
35 6= 22
— =27
3.0 6= 30
— =32
2.5 1 6= 35
~ 20
&
=
1.5
1.0
0.5
0.0

-4 -2 0 2 4

Fig. 22: 2D plot of the solution of the NLSE(Rogue
Wave formation) for different values of 6
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Fig. 23: 3D plot of the solution of the NLSE(Rogue
Wave formation)

E. From the solution of equation (54), (55) and (56)
we get the following 2-D and 3-D plots for studying
the system under unperturbed and perturbed
conditions:
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a) Forunperturbed states:
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Fig. 24: Phase trajectory of the unperturbed system,
(initial conditions in legend), plot of ¢ vs z, from
equation (54) and (55) (M=0.9)
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Fig. 25:Oscillation of the unperturbed system, (initial
conditions in legend), plot of B vs ¢ , from equation
(54)and (55)(M=0.9)

b) For perturbed states:

87

¢ vs. z plot (with perturbation)

400
\\
/ \
300 A e }
| y
N i { o
L __7/
! ;
A S [— $:0.01 2:0.205
— $:09 z:1
4 — ¢:1.1 z:0.6
_100_ M PR B ¢
— §:4 z:0.36

T T T
=15 -5.0 =25 0.0 2.5 5.0 1.5

Fig. 26: Phase trajectory of the perturbed system,
(initial conditions in legend), plot of ¢ vs z, from
equation (54) and (56) (M=0.9)
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Fig. 27: Oscillation of the perturbed system, (initial
conditions in legend), plot of § vs ¢, from equation

(54) and (56) (M=0.9)

From these plots of both the systems, we observe the
following things:

i)  Incase of the unperturbed system, the trajectory
doesn’t depend much on the initial conditions,
except for the starting points. But in case of
perturbed system, the change / distortion of
trajectory with respect to the initial conditions
can be visibly observed.
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i) The periodic oscillation of the unperturbed
system is highly systematic, but that of the
perturbed systemis chaotic and distorted.

iii) Although distortion exists in the perturbed
system, the basic outline (region) of the curve
remains unaltered.

iv) The phase trajectory initially appears to orbit
around some central potential, but gets heavily
and suddenly deflected outwards, near the end.

Thus, from these observations, we can infer that
although the system appears to be stable initially, it
loses its stability and tend to get chaotic in the long
run. This might be due to the presence of hidden
influencing forces, which remain passive initially,
but gets active after a certain time, thus making the
system unstable and chaotic. Thus, this work can be
extended to the study of Lyapunov exponents, to
assure the existence of hidden influencers.

7. Conclusions

From the detailed study of the plots, we analysed the
basic properties of the Electrostatic and Ion-Acoustic
waves in plasma, and noted their behavioral
dependencies on different parameters like phase
velocity, stream velocity, viscosity of the plas ma and
the ratio between mass of electrons and mass of ions.
We observed that the greater the difference between
the phase velocity, the higher the peak. Also, the
more viscous a plasma, the faster the potential peak
drops. And the lesser the mass of the ion, more is the
effect of the potential peak on it. Thus, we can say,
that due to the formation of such a positive potential
peak in the plasma, the ions present are strongly
repelled by it and are accelerated to supersonic
velocities in a short span of time, giving rise to shock
waves in plasma. Also, the more the height of the
potential peak, the more will be its interaction with
the particles. As a result, higher peaked potentials
repel the ions with more force and attract more
negative charges, which results in the increase of
negative potential on the right side of the peak. From
the solution of the nonlinear Schrodinger equation
(NLSE) we can confirm the formation and presence
of Rogue waves in the plasma. These sudden gigantic
waves are destructive in nature, as their amplitudes
are much larger than the ordinary waves, as can be
seen from the graphical analysis. The occurrence of
solar flares can also be attributed to similar
phenomenon like this, where the particles attain
supersonic velocities, traveling up all the distance
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between sun and earth, and interfering with the
Earth’s atmosphere, where they interact with the
particle present in the ionosphere. Due to collision
the electrons present in those particles jump to
excited states, and while returning to their initial
states they radiate energy in the form of visible
lights, resulting in the formation of auroras. The
auroras are generally of green and blue color, which
indicates the presence of nitrogen in the upper
atmosphere of Earth. The occurrence of rogue waves
in sun have got devastating effects on the artificial
satellites moving in the outer space, as the
occurrence of these waves are sudden, the satellites
are unable to withstand or take safety measures
against their damaging effects. The study of the
system dynamics in both perturbed and unperturbed
cases led to the inference that hidden forces may be
present in the system, which leads to the system
becoming chaotic and unstable in the long run.
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