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In this paper, the propagation of electron acoustic waves in a collision less Fermi plasma is investigated analytically by 

employing Quantum Hydrodynamic (QHD) model. The plasma system taken into account consists of hot and cold electrons 

and ions. The modified Korteweg-de Vries Burgers equation is derived in order to study the shock profile of electron acoustic 

waves numerically in a viscous plasma at the critical regime. The standard reductive perturbation method is employed to 

derive the mK-dV Burgers equation. Standard soliton solutions are used for quantitative and qualitative study of spatial and 

temporal evaluation of shock waves. 

 

1. Introduction  

  
Plas ma is known as “The fourth state of 

matter”, which has gained enormous interest for the 

last few years due to its existence in the earth (like 

Auroras, Lightning, Earth’s Ionosphere, Fluorescent 

light, etc.) as well as in the universe ( like So lar 

Wind, Van Allen Belts and Nebula, etc.). In a 

plasma system, there are roughly equal number of 

positively and negatively charged particles which  

make it electrically conducting medium. When the 

atoms in a gas, become ionized it produces plasma, 

which exh ibits collect ive behaviour. In some cases, 

plasma also consists of neutral and dust particles, 

etc. 

Recently there has been a great deal of interest in 

the study of different aspects of quantum plasma 

because of its large range of applications in metal 

nanostructures[1], u ltra-s mall electron ic devices[2], 

laser-produced plasmas[3] as well as in  

astrophysical plas mas[4] such as white dwarfs, 

neutron stars and pulsars, etc. when the species of 

plasma, like electrons and ions are at  high densities, 

low temperature, and the inner particle distance is 

smaller compared to de-Broglie wavelength then 

the plasma considered to be degenerate quantum 

plasma. Much of the study of the properties of 

degenerate ionized matter in  quantum plas ma is 

inspired by the pioneering works of Bohm, Pines, 

and Levine. The popular Schr¨odinger–Poisson 

formulat ions describe the dynamics of plasma at 

quantum scale called Quantum Hydrodynamic 

(QHD)[5]. QHD has been used to study the 

collective process in quantum degenerate gasses in 

plasma. The QHD Model essentially is the 

extension of the usual classical flu id model in  

plasma, where a quantum correction term, ‘Bohm 

potentials’ [6], [7], [8] appears in the equation of 

motion of charged particles. Many researchers have 

studied the different electrostatics plasma modes in 

quantum plas ma using QHD models [5]. The study 

of electron  acoustic wave (EA) has received 

noticeable attention due to its existence in 

Laboratory experiments [9] as well as in space 

[10],[11],[12]. EA wave was first shown by 

Watnabe and Taniuti[13]. St rongly excited EA 

waves can readily form nonlinear structures like 

solitons, shocks, double layers, etc. This wave 

exists in two  temperature (hot and cold) electrons 

and stationary ion plasma where the cold  electrons 

provide the inertia and the hot electrons provide the 

necessary restoring force [14]. The ions play the 

role of neutralizing background [15-17]. The 

frequency of these wave is much larger than ion 

frequency so that EAW are basically high-

frequency dispersive plasma. The EAWs are shown 

to give rise to stable oscillations under the 

conditions 
𝑇𝑒ℎ𝑇𝑒𝑐 ≥ 10 (with 𝑇𝑒ℎ is the temperatures of 

hot electrons and 𝑇𝑒𝑐 is the temperature of cold 

electrons) and the number density of cold electron 

is much smaller than hot electron as the oscillat ion 

time scale of EAW is much larger than the 

oscillation t ime scale of hot electron and 0.2 ≤𝑛𝑒𝑐𝑛𝑒ℎ ≤ 0.8. Otherwise, it will be heavily damped. 

Plas ma contains a wide variety of waves as 

it behaves like a fluid and the long-range interaction 

between the particles in it. Those waves are solitary 
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waves, shock waves, double layers, etc. Here we 

discuss shock wave, which  is characterized by an  

abrupt change in pressure, temperature, and density 

of the medium. Shock structures have been 

experimentally  studied by Anderson et al [18]. 

These waves are formed due to a delicate balance 

between nonlinearity and d issipation. Several 

different mechanisms, like landau damping, 

viscosity, wave-particle interaction are responsible 

for the formation of shock wave. When a medium 

has dissipation and dispersion then the dynamics of 

the nonlinear wave can  be adequately described by 

K-dVB equation. The Burger term is responsible for 

the generation of shock waves due to the viscosity 

term. At the crit ical regime, the dynamics of the 

nonlinear wave are governed by modified  K-dVB 

equation. In this article, we study the dispersion 

relation of electron acoustic wave and propagation 

of shock wave in the critical reg ime of collisionless 

plasma with the help of modified K-DVB equation. 

 

2.  Basic formulation 

 

Consider three-component unmagnetized, quantum 

dense plasma consisting of non- relativistic inertial 

cold, and inert ialess hot electron fluids and static 

positive ions. Thus, at equilibrium, we have zini0 = nc0 + nh0 , where  nc0 ,   nh0  , ni0  are the 

equilibrium number density of cold electrons, hot 

electrons, and positive ions respectively. A one- 

dimensional QHD model is described by continuity 

equation, momentum equation and closed by the 

Poisson’s equation. In the momentum equation the 

quantum statistical pressure is given by  
2 3

2
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Where, j = h  for hot electron, 𝑚𝑗  is the mass, 
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  is the Fermi thermal speed, 𝑇𝐹𝑗  is 

the Fermi temperature, and 𝑘𝐵  is the Boltzmann 

constant. nj  is the number density with the 

equilibrium value nj0  and Bohm potential is the 

quantum diffraction term. The governing equation 

of nonlinear dynamics of electron acoustic wave in 

a degenerate quantum plasma system, may be 

written as: 
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Where the subscript c, h, and i are used to denote 

cold, hot electrons, and ions respectively. u and p 

are described the fluid velocity and degenerate 

pressure,  ħ is the Planck’s constant divided by 2𝜋, 𝜑 is the electrostatic wave potential and zi𝑒  is the 

charge of the ion.  

We now introduced the following normalization: 
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Where,  
2
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  is the cold electron 

plasma frequency.  

 The Normalized Equations are, 
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 Where, 
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The charge neutrality at equilibrium reads 

1 1   .  

 

3. Analytical study 

 

a.  Derivation of linear dispersion relation 

 

In order to study the nonlinear behaviour of 

electron acoustic wave in two temperature electron 

ion plasma, we make the following perturbation 

expansion for the field quantities 𝑛ℎ , 𝑢ℎ, 𝑛𝑐 , 𝑢𝑐  and 𝜑 about their equilibrium values, 
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     (12)          

We assume that all field variables varying as 

 exp i kx t   .By direct substitution method 

we get the real dispersion relation: 
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b. Derivation of the modified K-dV 

Burgers equation 

 

Here we derived Modified Korteweg-de Vries 

Burgers equation for multicomponent plasma 

containing warm and cold distributed electron and 

neutralizing ionic background. To derive the 

equation of motion for the nonlinear electron 

acoustic wave, the perturbation technique is 

employed. And stretched variables are defined as- 
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Where, 𝜀  is a d imensionless smallness parameter  

which characterizes the strength of non-linearity 

and weakness of dispersion. V0  is the phase 

velocity of the wave. 

 Modified Kd-VB equation obtained which is given 

by- 
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Here, we put 𝜑 (1) = 𝜑  and 
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It is clearly seen that if viscous coefficient 𝜂0 = 0, 

then equation (14) reduces to modified K-dV 
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equation with 𝑞 = 0.The cause of dissipation is the 

viscous coefficient. By using the transformation 

relation  𝜒 = 𝜉 − 𝑀𝜏  (where M is Mach number 

i.e., speed of the frame) we get the traveling wave 

solution of modified K-dV Burger equation. Here 𝜒 

is the new phase variable i.e., combining both 𝜉 

and 𝜏 as a single variable. We obtain the following 

soliton solutions: 
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4. Result and discussion 

 

a. Real dispersion relation 

Here, we consider only the real segment of 

dispersion relation. The imaginary component 

implies collisionless damping which violates the 

energy conservation principle.  The quantum 

diffraction term (H), the streaming velocity (𝑢0 ), 

the viscosity coefficient (𝜂)  and the ratio of 

equilibrium number density of cold electrons, and 

hot electrons (𝛿) are the parameters. 

 
Fig. 1: Real dispersion for different quantum 

diffraction parameter (H) 

 

 
Fig. 2: Real dispersion for different streaming 

velocity (u0) 

  

Since the frequency (𝜔𝑟 ), and wavenumber ( 𝑘𝑟 ) 

can’t be negative that’s why we take only first 

quadrant while plotting 𝜔𝑟   vs 𝑘𝑟  (irrespective of 

parameters). In that particu lar case, we fix the value 

of 𝑘𝑖  at 0.5. From the expression of real d ispersion 

relation, we find that there arises a singularity at 𝑘𝑖 =𝑘𝑟 =0.5. That’s why we confined the range of 𝑘𝑟 ≥0.6. Here the phase velocity is insignificant. In 

fig. 1, we have plotted the real dispersion relation 

(𝜔𝑟  vs 𝑘𝑟 ) by varying quantum d iffraction term (H) 

and considering other parameters as constant. For 

increasing the value o f H, the curves become 

steeper. In fig. 2, we have p lotted the real 

dispersion relation by varying the streaming 

velocity (𝑢0) and considering other parameters as 

constants. Here also the curves become steeper by 

increasing the value of streaming velocity. 
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b. Shock profile 

 
Fig. 3: Spatial extent of EA wave for d ifferent 

Mack number (M) considering δ=0.1, H=2, v0=0.6, 

u0=0.2 

 

 

For electron acoustic wave Mach number (M) 

varies from 0.6 to 1.4. From fig . 3, we can show 

that with the increment of the value of new phase 

variable ( 𝜒 ) the shock (an  abrupt change in φ2) 

appears. But the nature of the curve remains 

unchanged with the variation of Mach number (M). 

 

 
 

Fig. 4 : Spatial extent of EA wave for d ifferent 

quantum diffraction parameter (H) considering 

δ=0.1, v0=0.4, u0=0.2 
 

 From fig. 4, we can show that with the increment 

of quantum diffraction parameter H (in  quantum 

regime) the shock becomes stronger. 

 
 

Fig. 5: Temporal evaluation of the electrostatic 

potential for different Mack number (M) 

considering δ=0.1, H=2, v0=0.6, u0=0.2 

  

In fig.5, we show that there is a sudden full of 

electrostatic potential at  𝜏 = 0 .But with the 

increment of time and Mach number (M) the 

electrostatic potential does not change i.e. 

stationary. 
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Fig. 6: Temporal evaluation of the electrostatic 

potential for d ifferent value of quantum d iffraction 

parameter (H) considering δ=0.1, v0=0.4, u0=0.2 

 

 In fig.6, we show the temporal evaluation of the 

shock from semi-classical regime to quantum 

regime. For the lower value of H more time 

required to get the shock. With the increment of H, 

we get strong shock within a short time. 

 

5. Conclusions   

In this paper, we have investigated the 

propagation of electron acoustic waves in a 

collisionless unmagnetized Fermi plas ma and have 

derived the modified K-dV Burgers equation to 

study the shock profile. We have plotted real 

dispersion relation fo r d ifferent quantum d iffraction 

parameters and different streaming velocit ies and 

have shown that higher values of both parameters 

make the curves sharper. We have also plotted the 

spatial and temporal extent of the shock with 

different parameters namely Mach number and 

quantum diffract ion parameter. Here also the 

quantum diffraction parameter is responsible for a 

rapid and strong shock in case of spatial extent. 
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