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Stationary nonlinear localized electrostatic (ES) waves may be excited when an electron beam is injected into a plasma. In the 
present investigation, the propagation properties of two dimensional ion-acoustic solitons have been studied in a plasma 

composed of ion fluid, hot electrons obeying Cairns distribution and embedded with electron beam. Electron beams exist in 

different space and astrophysical environments and influence the properties of nonlinear structures. In this paper, we consider 

model equations and derive the KP equation using reductive perturbation technique. Using its solution, numerical analysis is 

carried out. It is seen that negative potential ion-acoustic solitons are observed under the influence of variation of beam density, 
beam velocity and non-thermal parameter. The findings of this investigation may be of great importance to understand the 

nonlinear phenomena in the upper layer of the magnetosphere where Cairns distributed hot electrons, ions and electron beam may 

exist. 

 

 

1. Introduction  

  
Nonlinear waves have great importance and vital 

role in understanding physics of various nonlinear 

phenomena in space [1-3] and astrophysical 

environments [4-5]. In Earth’s magneto-tail reg ion 

the formation of solitary potential structures (both 

compressive and rarefactive) have been admitted by 

various satellite observations. The presence of 

electron beam is revealed by various satellites [6-

10]. A lso, it was frequently observed that electron 

beam coexists with ion acoustic waves in region of 

space and due to the presence of electron beam the 

characteristics of ion acoustic waves [11- 12] also 

get modified. Abundance of observations affirm the 

presence of non-thermal charged particles in 

various types of environments  [13-16]. In  

magnetosphere and solar wind [17-18], the presence 

of energetic charged particles with non-thermal tails 

is revealed by various satellite observations. Cairns 

et al., [19] established Cairns distribution for these 

types of charged particles which exh ibit non-

thermal tail. The observations of Freja [20] and 

Viking [21] satellites substantiate that properties of 

ion acoustic waves are reformed due to presence of 

charged particles following non-thermal 

distribution. Numerous investigations have been 

reported with Cairns distribution [19],  [22-24]. 

Recently, Singh and Saini [24] observed breather 

structures and peregrine solitons in a polarized  

space dusty plasma using Cairns distribution. The 

nonlinear ion acoustic waves [25-27] and electron 

acoustic waves [27-28] with electron beam have 

been introduced. Lakhina et al., [27] studied the 

large amplitude ion-acoustic and electron acoustic 

solitary waves in an  unmagnetized multi component 

plasma comprising of cold background electrons 

and ions, a hot electron beam and a hot ion beam 

using Sagdeev pseudopotential technique. 

    Five decades ago, Boris Kadomtsev and Vladimir 

Petviashvili [29] introduced a nonlinear equation in 

two dimensional system with lump solution which  

elaborate the progression of long nonlinear waves 

of small amplitude which are slow dependent on 

transverse coordinates. An innumerable explorat ion 

has been done to study the transverse perturbation 

by deriving the Kadomtsev-Petviashvili (KP) 

equation [29] and its solution [30-33] in  various 

types of plasmas. The study of Solitary waves of the 

Kadomstev-Petviashvili equation in warm dusty 

plasma with variab le dust charge, two temperature 

ion and non-thermal electron was presented by H. 

R. Pakzad [30]. Masood and Rizv i [31] investigate 

the two-dimensional propagation of nonlinear ion 

acoustic shock and solitary waves in an 

unmagnetized plas ma consisting of non-thermal 

electrons, Boltzmannian positrons, and singly 

charged hot ions streaming with relativistic 

velocities and observed that the wave dispersion 

increases with increase in  the non-thermal electron 

population and results into loss of the strength of 

the ion acoustic shock wave and leads to an increase 

in amplitude of soliton due to the absence of 

dissipation in the KP equation. Sain i et al.,[32] 

investigated both analytically and numerically the 

characteristics of dust acoustic (DA) solitary waves 

in a dusty plasma system comprising of dust as a 

flu id and superthermal electrons as well as ions. To 

our best knowledge, two-dimensional ion acoustic 

soliton with electron beam in Cairns distributed 
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plasma has not been reported yet. In present study, 

we have tried to explore the two dimensional 

soliton in a plasma comprising of ion fluid, hot 

electrons obeying Cairns distribution and immersed 

with electron beam. We have used reductive 

perturbation technique to derive KP equation and 

study its solution. The investigation is arranged as 

follows: in Sect. II, the basic set of governing 

equations is presented. In Sect. III, numerical 

analysis has been illustrated. In Sect. IV, the 

conclusions are bestowed. 

 

 

2. Basic equations 

  

We consider three component collisionless 

unmagnetized plas ma comprising electron beam 

with charge qe= -e and mass me, cold ions with 

charge qi = Ze and mass mi and non-thermal 

electrons. The electrons are Cairns distributed, 

electron beam and ions are modelled by set of fluid  

equations as follows: 

 𝜕𝑁𝑖𝜕𝑇 + 𝜕(𝑁𝑖𝑈𝑖)𝜕𝑋 + 𝜕(𝑁𝑖𝑉𝑖 )𝜕𝑌  = 0,                                  

(1) 

𝜕𝑈𝑖𝜕𝑇 + 𝑈𝑖 𝜕𝑈𝑖𝜕𝑋 + 𝑉𝑖 𝜕𝑈𝑖𝜕𝑌 = − 𝑞𝑖𝑚𝑖 𝜕𝛷𝜕𝑋  ,                          

(2) 

𝜕𝑉𝑖𝜕𝑇 + 𝑈𝑖 𝜕𝑉𝑖𝜕𝑋 + 𝑉𝑖 𝜕𝑉𝑖𝜕𝑌 = − 𝑞𝑖𝑚𝑖 𝜕𝛷𝜕𝑌  ,                            

(3) 

and for the electron beam, 

𝜕𝑁𝑏𝜕𝑇 + 𝜕(𝑁𝑏𝑈𝑏)𝜕𝑋 + 𝜕(𝑁𝑏𝑉𝑏)𝜕𝑌  = 0,                                

(4)  

𝜕𝑈𝑏𝜕𝑇 + 𝑈𝑏 𝜕𝑈𝑏𝜕𝑋 + 𝑉𝑏 𝜕𝑈𝑏𝜕𝑌 = − 𝑒𝑚𝑒 𝜕𝛷𝜕𝑋 ,                          

(5) 

𝜕𝑉𝑏𝜕𝑇 + 𝑈𝑏 𝜕𝑉𝑏𝜕𝑋 + 𝑉𝑏 𝜕𝑉𝑏𝜕𝑌 = − 𝑒𝑚𝑒 𝜕𝛷𝜕𝑌  .                    (6) 

the Poission equation encloses the system 

 𝜕2𝛷𝜕𝑋2 + 𝜕2 𝛷𝜕𝑌2 = −4𝜋𝑒 (𝑛𝑖 𝑍 − 𝑛𝑒 − 𝑛𝑏 ).                   (7) 

 

where ni , ne , nb   are the number densities of ions, 

non-thermal electrons and beam electrons 

respectively and ui , ub  are the mean velocity o f ions 

and the velocity of beam. Φ  denote electrostatic 

potential. At equilibrium the charge neutrality 

condition is ni0 Z = ne0  + nb0 , implicit Z = a+ ϖ 

where a = 
ne0ni0  and  ϖ  = 

nb0ni0  . The velocity of 

electrons is very high so it cannot express by 

Maxwellian distribution because the high energy 

electrons can only be expressed by Cairns 

distribution [19], so the number density of electrons 

in normalized form is given as: 

 

       𝑛𝑒 = 𝑛𝑒0 [1 + 𝐻1𝜙 + 𝐻2𝜙2 + ⋯ ],                (8) 

 

Where, H1 = 1 − Λ    and H1 = 1/2 , where Λ = 4α1(1+3α1 ) and α1 is non-thermality parameter that  

depicts non-thermal effect in phase space of Cairns 

distribution. To make the system dimensionless, we 

normalize the equations from Eq. (1-7) and get two-

fluid model equations as : 

 

The ion equations are: 

 𝜕𝑛𝑖𝜕𝑡 + 𝜕(𝑛𝑖𝑢𝑖 )𝜕𝑥 + 𝜕(𝑛𝑖 𝑣𝑖)𝜕𝑦  = 0,                                

(9) 

𝜕𝑢𝑖𝜕𝑡 + 𝑢𝑖 𝜕𝑢𝑖𝜕𝑥 + 𝑣𝑖 𝜕𝑢𝑖𝜕𝑦 = − 𝜕𝜙𝜕𝑥  ,                            

(10) 

𝜕𝑣𝑖𝜕𝑡 + 𝑢𝑖 𝜕𝑣𝑖𝜕𝑥 + 𝑣𝑖 𝜕𝑣𝑖𝜕𝑦 = − 𝜕𝜙𝜕𝑦  .                            

(11) 

Electron beam equations are: 

 𝜕𝑛𝑏𝜕𝑡 + 𝜕(𝑛𝑏𝑢𝑏)𝜕𝑥 + 𝜕(𝑛𝑏𝑣𝑏)𝜕𝑦  = 0 ,                                

(12)  

𝜕𝑢𝑏𝜕𝑡 + 𝑢𝑏 𝜕𝑢𝑏𝜕𝑥 + 𝑣𝑏 𝜕𝑢𝑏𝜕𝑦 = − 1𝜇𝑚𝑍 𝜕𝜙𝜕𝑥  ,                  

(13) 

𝜕𝑣𝑏𝜕𝑡 + 𝑢𝑏 𝜕𝑣𝑏𝜕𝑥 + 𝑣𝑏 𝜕𝑣𝑏𝜕𝑦 = − 1𝜇𝑚 𝑍 𝜕𝛷𝜕𝑦 ,                     

(14) 

The Poission’s equation is: 

𝜕2 𝜙𝜕 𝑥2 + 𝜕2𝜙𝜕𝑦2 = −𝑛𝑖 + 𝑎𝑧 (1 + 𝐻1𝜙 + 𝐻2𝜙2 ) + 𝑛𝑏𝑧 .   
                                                                        (15) 



The African Review of Physics (2020) 15 
Special Issue on Plasma Physics: 013 
 

 

113 

 

The number densities ni , nb    are normalized by ni0  

unperturbed ion density), the electric potential ϕ = Φ/Φ0  (where Φ0  = KBTe/e ) and velocities  Ui =  ui/cs, Ub = ub /cs (where cs (sound speed) = (ZKB Temi )1/2) . Time variab le is scaled ion plasma 

frequency 
1ωp,i = ( mi4πni0Z2 e2 )1/2

and space variable 

is scaled λD,e = ( KBTe4πni0e2 )1/2. The ratio of mass of 

electron to mass of ions is denoted by  μm  (i.e. μm = me/mi . In this paper we have followed 

reductive perturbation technique, by using 

stretching coordinates, the independent variables 

can be stretched as follows: 

 𝜉 = 𝜖(𝑥 − 𝑉𝑡), 𝜂 = 𝜖2𝑦    𝑎𝑛𝑑    𝜏 =  𝜖3𝑡 ,        (16) 

 

V is the phase velocity of wave along x-direction. 

The dependent variables are expanded as: 𝑓 = 𝑓(0) + ∑ 𝜖2𝑗𝑓 (𝑗)∞
𝑗=1       and  

                    𝑔 = 𝑔(0) + ∑ 𝜖2𝑗+1𝑔(𝑗)∞𝑗=1  .           (17) 

 

where f = ni , nb , ui , ub , ϕ and g = vi ,vb  and values 

of ni , nb , ui , ub , ϕ at equilibrium are 1, ϖ, 0, u0 , 0 

and values of  vi  and vb  are zero  at equilibrium. 

Now substituting the stretching coordinates Eq. (16) 

and perturbation Eq. (17) in equations from Eq. (9-

15), from lowest-order of ϵ we get: 

                   𝑛𝑖(1) = 1𝑉 𝑢𝑖(1)
,                                 (18)  

                                   

                   𝑢𝑖(1) = 1𝑉 𝜙 (1),                                (19) 

 

                 
𝜕𝑉𝑖(1)𝜕𝜉 = 1𝑉 𝜕𝜙(1)𝜕𝜂 ,                                 (20) 

 

      −𝑛𝑖(1) + 𝑎𝑍 𝐻1𝜙 (1) + 1𝑍 𝑛𝑏(1) = 0                   (21) 

 

         𝑛𝑏(1) = −𝜛(−𝑉+𝑢0) 𝑢𝑏(1)
,                                 (22) 

 

         𝑢𝑏(1) = 1𝜇𝑚 𝑍(−𝑉+𝑢0) 𝜙 (1),                           (23) 

 

           
𝜕𝑉𝑏(1)𝜕𝜉 = 1𝜇𝑚 𝑍(−𝑉+𝑢0) 𝜕𝜙(1)𝜕𝜂 ,                        (24) 

 

and dispersion relation is given by: 

 

    
1𝑉2 + 𝜛𝜇𝑚𝑍2 (𝑢0−𝑉)2 − 𝑎𝑍 𝐻1 = 0.                        (25) 

 

next higher order in ϵ gives the second higher order 

equations: 

 𝜕𝑛𝑖(1)𝜕𝜏 − 𝑉 𝜕𝑛𝑖(2)𝜕𝜉 + 𝜕𝑛𝑖(1)𝑢𝑖(1)𝜕𝜉 + 𝜕𝑢𝑖(2)𝜕𝜉 + 𝜕𝑣𝑖(1)𝜕𝜂 = 0,     (26) 𝜕𝑢𝑖(1)𝜕𝜏 − 𝑉 𝜕𝑢𝑖(2)𝜕𝜉 + 𝑢𝑖(1) 𝜕𝑢𝑖(1)𝜕𝜉 + 𝜕𝜙(2)𝜕𝜉 = 0,              (27) 𝜕𝑣𝑖(1)𝜕𝜏 − 𝑉 𝜕𝑣𝑖(2)𝜕𝜉 + 𝑢𝑖(1) 𝜕𝑣𝑖(1)𝜕𝜉 + 𝜕𝜙(2)𝜕𝜂 = 0,               (28) 𝜕𝑛𝑏(1)𝜕𝜏 − 𝑉 𝜕𝑛𝑏(2)𝜕𝜉 + 𝑢0 𝜕𝑛𝑏(2)𝜕𝜉 + 𝜕𝑛𝑏(1)𝑢𝑏(1)𝜕𝜉 + 𝜛 𝜕𝑢𝑏(2)𝜕𝜉 + 𝜛 𝜕𝑣𝑏(1)𝜕𝜂 = 0,                (29) 𝜕𝑢𝑏(1)𝜕𝜏 − 𝑉 𝜕𝑢𝑏(2)𝜕𝜉 + 𝑢𝑏(1) 𝜕𝑢𝑏(1)𝜕𝜉 + 𝑢0 𝜕𝑢𝑏(2)𝜕𝜉  

                                               − 1𝜇𝑚 𝑍 𝜕𝜙(2)𝜕𝜉 = 0,        (30) 𝜕𝑣𝑏(1)𝜕𝜏 − 𝑉 𝜕𝑣𝑏(2)𝜕𝜉 + 𝑢𝑏(1) 𝜕𝑣𝑏(1)𝜕𝜉 + 𝑢0 𝜕𝑣𝑏(2)𝜕𝜉  

                                               − 1𝜇𝑚𝑍 𝜕𝜙(2)𝜕𝜂 = 0,   (31) 

 𝜕2𝜙(1)𝜕 𝜉2 = −𝑛𝑖(2) + 𝐶1𝜙 (2) + 𝐶2𝜙2(1) + 1𝑍 𝑛𝑏(2)
,     (32) 

 

Where, C1 = aZ H1 and C2 = aZ H2. Now by make use 

of first order results in second order in order to 

eliminating the later order terms we obtain 

nonlinear KP equation as  

 𝜕𝜕𝜉 (𝜕𝜙𝜕𝜏 + 𝐴𝜙 𝜕𝜙𝜕𝜉 + 𝐵 𝜕3 𝜙𝜕 𝜉3 ) + 𝐶 (𝜕2𝜙𝜕 𝜉2 + 𝜕2𝜙𝜕 𝜂2 ) = 0,(33) 

 

Where,   A = 
𝜇𝑚2 𝑍3(𝑉 −𝑢0)4(−3+2𝐶2 𝑉4)+3𝜛𝑉4−𝑉𝜇𝑚(𝑉 −𝑢0)(2𝜇𝑚𝑍2(𝑉 −𝑢0)3+2𝜛𝑉3 ) ,    

(34) 

 

              B = 
𝑉3 𝜇𝑚 𝑍2(𝑉−𝑢0)32𝜇𝑚𝑍2 (𝑉−𝑢0)3+2𝜛 𝑉3 ,                       (35) 

     

              𝐶 = 𝑉𝜇𝑚𝑍2 (𝑉−𝑢0)3(2−𝐶1𝑉2 )2𝜇𝑚 𝑍2(𝑉−𝑢0)3+2𝜛 𝑉3  ,                    (36) 

 

Where, A is nonlinear coefficient, B is dispersion 

coefficient and C represents higher order 

coefficient. For quickness, we have replaced ϕ(1)
 by ϕ. By assuming the traveling wave transformation  χ = ξ + η − vτ to attain stationary solution of KP 

equation (33), the velocity  of the co-moving frame 

with solitary wave is denoted by v. The KP Eq. (33) 

is transformed to differential equation by adopting 

this single transformat ion, then we evolve out the 

stationary solution, after integrating with 
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appropriate boundary conditions (e.g., ϕ(χ) , ϕ′(χ) → 0 as |χ| → ∞), is as follows [32] 

 

            𝜙 = 𝜙𝑚𝑆𝑒𝑐ℎ2 ( 𝜒𝑤1 ) ,                               (37) 

 

Where,      𝜙𝑚 = 3(𝑣−𝐶)𝐴                                          

(38) 

 

is peak amplitude of solitons with width 

 𝑤1 = 2√ 𝐵𝑣−𝐶 .                                                     (39)      

 

 

3.     Numerical analysis   

 

The nonlinear coefficient (A) has only negative 

values so only negative potential structures are 

formed. It depends upon various parameters viz., 

beam density (ϖ), non-thermal parameter (α1) etc. 

The numerical data for p resent investigation               ϖ = 0.1 - 0.4, u0  = 1.25, μm= 1/1836, is used from 

Nejoh and Sanuki [25]. The effect of various 

plasma parameters on nonlinear coefficient and 

soliton profile has also been analysed.                              

. 

 

  Fig. 1. Variat ion of nonlinear coefficient (A) with 

non-thermal parameter ( α1  for different values of 

beam density ( ϖ ), Black(Thick):  ϖ  = 0.15; 

Blue(Dotted):  ϖ  = 0.25; Red(Dashed):  ϖ  = 0.35, 

with u0 = 1.25.  

  

Fig.1 illustrates the effect of non-thermal parameter 

( α1 ) on nonlinear coefficient (A) for different  

values of beam density (ϖ ). It is observed that 

nonlinear coefficients A is always negative. It 

decreases with increase in density of beam (ϖ) and 

also increases with non-thermal parameter (α1). The 

effect of non-thermal parameter (α1) on profile  of 

soliton with beam and without beam is 

demonstrated by Fig. 2(a) and Fig. 2(b) 

respectively. The amplitude of solitons is reduced in 

the presence of electron beam.  

 

 
                                         (a) 

 

 
                                          (b) 

 

Fig.2 Variation of soliton profile fo r different 

values of non-thermal parameter (α1) (a) with beam 

( ϖ  = 0.2,  u0  = 1.25), Black(Thick):  α1  = 0.2; 

Blue(Dotted): α1 = 0.3; Red(Dashed): α1 = 0.4, (b)  

without beam ( ϖ = 0, u0  = 0), Black(Thick):  α1 = 

0.20; Blue(Dotted):  α1  = 0.21; Red(Dashed):  α1  = 

0.22. 

 

Moreover with (without) electron beam the 

amplitude and width of soliton are  increased 

(decreased) with increase in non-thermal parameter 

( α1 ). The nonlinearity effect is sensitive to the 

variation in non-thermal parameter ( α1 ), and it  

dominates for large value of α1  leading to increase 

in amplitude of ion-acoustic solitons. 

 

 
                                           (a) 
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                                            (b) 

Fig. 3. Variation of soliton profile for (a) different 

values of beam density ( ϖ ), Black(Thick):  ϖ  = 

0.15; Blue(Dotted):  ϖ  = 0.25; Red(Dashed):  ϖ  = 

0.35 with α1 = 0.3 and u0 = 1.25, (b) 3D plot. 
 

Fig.3 (a) represents variation of soliton profile with 

electron beam density (ϖ). It  is noticed that with 

increase in  electron beam density (ϖ) the amplitude 

of negative potential soliton profile is enhanced 

along negative axis. Its three dimensional (3D plot) 

variation is given in Fig.3b. 

 

4.  Conclusions 

 

In this investigation, we have presented the 

propagation properties of two dimensional ion-

acoustic solitons in a three component 

unmagnetized p lasma consisting of electron beam, 

cold ions and non-thermal electrons following 

Cairns distribution. Using reductive perturbation 

technique, The KP equation has been derived. Only 

compression type ion-acoustic solitons are 

observed. The role of electron beam and non-

thermal parameter has been highlighted. The 

amplitude of soliton increases with increase in beam 

density (ϖ ) and non-thermal parameter ( α1 ) and 

reduced in presence of electron beam. The ro le of 

beam parameter is very crucial to control the 

amplitude of solitons. With increase in beam 

density, nonlinearity is enhanced and leads to 

increase in amplitude along negative axis of soliton 

profile. The present study may shed light to 

understand nonlinear phenomena of upper layer of 

magnetosphere. 
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