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The properties of crystalline quantum hard-sphere systems of bosons at low and high densities are studied. At a very 
high density, the hard-sphere system approaches close packing (CP) structure. The ground state energy per particle of a 
many- boson system of particles is calculated for close-packing densities. For a hard-sphere diameter fixed at 2.48Ǻ, it is 

found that for a He4 boson system, the low and high densities are 322 /1023.4 cmparticles×  and 322 /1015.6 cmparticles× , 

respectively. Our calculation shows that particle densities decrease with the increase in hard-sphere diameters when the 

saturation density is fixed at 28100.2 × 3/ mparticles . The energy per particle also increases with hard-sphere diameter, but 

it decreases with particle density. 
 

 
1.     Introduction 

A hard-sphere system is a many body system in 
which the particles interact via a pair-potential 
containing short-ranged and very large repulsive 
part. At low densities, the particles experience the 
attractive potential only weakly, whereas at high 
densities the repulsive part predominates and in 
such a case, the assembly can be considered a hard-
sphere system. In general, the hard-sphere system 
can serve as a reference (or zero-order) system in 
perturbative theories. For example, this scheme is 
the familiar thermodynamic perturbative theory [1] 
in classical statistical physics that describes 
classical fluids. The Quantum Thermodynamic 
Perturbative Theory (QTPT) has been   developed 
[2] to obtain the quantum hard-sphere equation of 
state for physical densities of systems such as 4He. 
The effort here is to study the properties of 
quantum hard-sphere systems at different densities, 
particularly densities resulting in the crystallization 
of a hard-sphere boson assembly. 

At very low density, the energy E of N-identical 
boson system is given by [3] 
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m is the mass of each boson and a is the s-wave 
scattering length [4] of the pair potential between 

particles, and 
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For a hard-sphere system, a reduces to hard-sphere 
diameter C. The series in Eq.1 is not a power 
series, and it breaks down at moderate and high 
densities, including the saturation liquid densities 

of He4 . 
At very high density, the hard-sphere system 

can go to close packing (CP) independently of 
statistics. This packing may either be random or 
regular. For such a system the ground state energy 
can be written as 
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Where, A, called the residue, is a dimensionless 
constant, and CPρ  is the proper CP density. Using 

the polyhedron cell method [5], the value of A has 
been predicted theoretically [6] to lie within the 
rigorous range, 
 

0.2763.1 ≤≤ A        (3) 

 
for regular CP (face-centred-cubic, FCC, or 
hexagonal-close-packing, HCP) by generalizing the 
exact calculation for a simple cubic (SC) lattice 
based on three mutually perpendicular linear 

lattices. This gives 2π=A . However, the 
experimental value of A extracted by Cole [7] from 
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the high pressure data ofHe3 , He4 , 2H and 

2D systems is: 6.07.15 ±≅A  for crystalline 

branch of the equation of state. 

2.     Theory 

The first attempt to represent the ground- state 
energy per particle of an assembly of 1>>N  
boson hard-spheres for all densities is due to 
London [8], who proposed the analytical equation 
of state 
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Where, C= hard-sphere diameter, 
















−= 1
22

5

π
b , 

CPρρ =0  and 
30
2

C
=ρ  is the ultimate density [9] 

for a system of classical hard-spheres that closes 
packs in a primitive hexagonal, i.e., a face-centered 
cubic (FCC) arrangement. Eq. 4 reduces to the well 
known limiting expressions at both low and high 
densities 
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At high density, 
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The first term, Eq.5, in the asymptotic form is the 
well known Lenz [10] term. Eq.6 is precisely the 
kinetic energy of a point mass m inside a spherical 

cavity of radius r-c, where 
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separation between two neighboring spheres. These 
results are obtained by assuming primitive 
hexagonal close packing, i.e., hcp or fcc, of the N 
cavities. 
 

Recently it was noted [11] that the derivation of 
high-density extreme of the original boson by 
London [8] (see Eq. 4) contains one fundamental 
error related to the neglect of the effective two-

body mass. This correction gives
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new result was designated in [11] as the modified 
London equation and which continues to satisfy 
Eq.4. The modified London equation (ML) 
equation agrees better with the Green Function 
Monte Carlo (GFMC) computer simulation of both 
the fluid and crystalline branches of the boson 
hard-sphere system than the original London 
equation.  

For boson hard-spheres, Eq.1 can be rewritten 
as, 
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Where, 
V

N=ρ  , ( ) 2

1
3Cx ρ≡ with, 
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Alternatively for 1<<x , we may write, 
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Where, the F’s are expressible in terms of the C’s, 
but C3, F3 and higher-order coefficients are 
unknown. For random close packing (RCP), the 
density 0716.0 ρρ = , which is roughly ten percent 

below the classical [13,14] RCP value 
of 086.0 ρρ = . This is thus the highest CP density 

for quantum hard-sphere fluids in the meta-stable 
region. Since particles at CP are perfectly localized, 
they lose their indistinguishability so that the 
results should be independent of the statistics in the 
limit. It should be emphasized that a regular close 
pack (CP) is found in the limit of crystalline 

helium, .4He  
For hard-sphere bosons at close packing (CP), 

i.e., at very low temperatures, 
N

E
 is given by Eq.7. 

For this calculation, we shall use two values ofρ , 
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i.e., 0776.0 ρρ =  and 086.0 ρρ = . For, )(0 xe , we 

shall only use the series up to C2, since C3 and 
higher order terms are either unknown or are very 
small and of no physical significance. Thus 
 

22
210 log1)( xxCxCxe ++≈      (10) 
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C= hard-sphere diameter [15] =2.84 Ǻ. 
For, 0ρ , we could also use the value of 

22102× particles/cm3 and 2410646.6 −×=m gm 

for He4 .  
Using the above mentioned parameters, the 

ground state energy per particle of a many-boson 
system of particles can be calculated for close-
packing densities. The results can be compared to a 

recent calculation [14] forHe4 . Thus the value of 

N

E
we have to work with is 
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The density at which the hard-sphere assembly may 
form CP crystalline structure may be called the 
saturation density and denoted bysρ . At this 

density, E will be maximum such that 
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This will give the value of sρρ = at which a hard-

sphere assembly of bosons can form a crystalline 
structure. Using this value of sρρ = , we can get 

N

E
per particle when the assembly of bosons, 

assumed to be composed of hard-spheres, forms a 
crystalline structure. Using Eq.11, we can write,  
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Using Eq.12 and the fact that ( ) 2

1
3log

−
Cρ  is very 

small, we shall get,  
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In our case, the ultimate density at which an 
assembly of hard-spheres that close packs (CP) is 
thus given by sρ and it can be compared with the 

earlier [9] such value0ρ . Simultaneously, the value 

of 
N

E
 will be calculated from Eq.11 by replacing 

ρ  by sρ . By varying the hard-core diameter ‘C’ 

we can get different values for sρ  and 
N

E
. 

There could be some objection to our using 
Eq.1 or Eq.7 for studying the properties of an 
assembly of hard-spheres that forms a crystalline 
structure since such a system has to be of high 
density, whereas Eq.7 is applicable to a low density 
system. But for comparison and rough estimates, 
we could use Eq.1 or Eq.7 and assume that these 
equations could be reasonably accurate from zero 
through physical densities. However, calculations 
using Eq.6, which is the equation for a high density 
system, are also given below. 

Using Eq.6 we can write, 
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At sρρ = , 0=




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E

ρρρ
 and hence Eq.16 leads to 

the result that 0ρρ = and this is the fundamental 

condition for a high density system leading to Eq.6. 
Hence for a high density system, Eq.6 will be used 

to get the value of 
N

E
at the density

30
2

C
s == ρρ . 

Again by varying C, we can get different values 

for
N

E
. From Eq.15, the value of sρ for a low 

density system is 
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For a high-density system, the value of sρ is, 
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330
41.12

)(
CC

densityhighs === ρρ      (18) 

 
Comparing Eqs.17 and 18, it is clear that the value 
of sρ for a high-density system is more than that 

for a low density system as it should be.  
For 48.2=C Ǻ, we get  
 

322 /1023.4)( cmparticlesdensitylows ×=ρ    (19) 

 
322 /1015.6)( cmparticlesdensityhighs ×=ρ    (20) 

 
3.     Results and discussion 

3.1 Calculation of the variation of particle 
density ρ with hard-sphere diameter C 

The calculations are done for saturation densitysρ , 

i.e., the density at which the hard-sphere assembly 
may form crystalline structure. Considerations are 
given to both low and high density. Referring to 
Eqs.17 and 18 
 

 
3
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3
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C
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The values of C were taken to vary from 2.1Ǻ to 
2.84 Ǻ in steps of 0.025 Ǻ. Table 1 below shows 
the variation of low density and high density for 
different values of hard-sphere diameter C. 

 
 

Table 1  
 

HARD-SPHERE 
DIAMETER, C (Ǻ) 

LOW SATURATION DENSITY 
329 /10 mparticles×  

HIGH SATURATION DENSITY 
329 /10 mparticles×  

2.100 1.047 1.523 

2.125 1.011 1.469 

2.150 0.976 1.419 

2.175 0.943 1.37 

2.200 0.911 1.324 

2.225 0.8806 1.28 

2.250 0.8516 1.238 

2.275 0.8238 1.197 

2.300 0.7972 1.159 

2.325 0.7718 1.122 

2.350 0.7474 1.086 

2.375 0.7241 1.053 

2.400 0.7017 1.02 

2.425 0.6802 0.9887 

2.450 0.6596 0.9588 

2.475 0.6398 0.93 

2.500 0.6208 0.9024 

2.525 0.6025 0.8759 

2.550 0.585 0.8504 

2.575 0.5681 0.8258 

2.600 0.5519 0.8022 

2.625 0.5363 0.7795 

2.650 0.5212 0.7577 

2.675 0.5068 0.7366 

2.700 0.4928 0.7164 

2.725 0.4794 0.6968 

2.750 0.4664 0.678 
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The graph below shows the variation of saturation 
density with the hard-sphere radius. 
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Fig.1: Variation of saturation density with hard-sphere 
diameter. 

Series 1: The curve for low saturation density. 
Series 2: The curve for high saturation density. 

 
There is a non-linear decrease in particle density 
with an increase in hard-sphere diameter. For a 
uniform volume, an increase in hard-sphere 
diameter means fewer particles are confined and 
hence a decrease in the particle densities. 

3.2     Calculation of variation of energy per 

particle 
N

E
 with the hard-sphere diameter C 

In this calculation, use was made of Eq.11, which 
is given as  
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Where, ( )2

1
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The following constants were used in the 
calculations:-  
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In order to study the variation of energy per 
particle with C, we need to keep the saturation 
density fixed at some value, say 
 

328 /100.2 mparticlesS ×=ρ . 

 
The following table was obtained for the 

variation of energy per particle with hard-sphere 
diameter C. 

 
 

Table 2: Values of energy per particle with hard-sphere 
diameter 

 

HARD-SPHERE 

DIAMETER ,C (Ǻ) 

ENERGY PER PARTICLE 

N

E
,( 2210−×  joules)  

2.100 2.0512 

2.125 2.0756 

2.150 2.1000 

2.175 2.1245 

2.200 2.1489 

2.225 2.1733 

2.250 2.1977 

2.275 2.2221 

2.300 2.2465 

2.325 2.2710 

2.350 2.2954 

2.375 2.3198 

2.400 2.3442 

2.425 2.3686 

2.450 2.3981 

2.475 2.4175 

2.500 2.4419 

2.525 2.4663 

2.550 2.4907 

2.575 2.5152 

2.600 2.5396 

2.625 2.5640 

2.65 2.5884 

2.675 2.6128 

2.700 2.6373 

2.725 2.6617 

2.750 2.6861 
 
 
Below is the graph that was obtained from the 
calculations. 
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Fig.2: Variation of energy per particle with hard-sphere 

diameter. 
 

When the hard-sphere diameter is increased, then 
fewer particles will be confined in a fixed volume. 
The total energy is then shared by fewer particles 
resulting in an increase in energy per particle.  

3.3.     Calculation of variation of energy per 
particle with particle density 

The equations and constants used in this case were 
similar to those calculations in Sec. 3.2. However, 
in order to study the variation of energy per particle 
with particle density, it was necessary to keep C 
fixed at some value. The chosen value for the hard-
sphere diameter was  
 

mC 101084.2 −×=  

 
The table below shows the values that were 
obtained. 
 

Table 3: Variation of energy per particle with particle 
density. 

 

DENSITY, ρ  

( 327 /10 mparticles× ) 

ENERGY PER PARTICLE, 

N

E ( )joules2310−×  

1.62 1.661 

1.563 1.681 

1.506 1.701 

1.449 1.721 

1.392 1.741 

1.335 1.760 

1.278 1.780 

1.221 1.800 

1.164 1.820 

1.107 1.839 

1.050 1.859 

0.993 1.879 

0.936 1.899 

0.879 1.919 

0.822 1.938 

0.765 1.958 

0.708 1.978 
 
Below is the graph for the same. 
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Fig.3: Graph showing the variation of energy per particle 

with particle density. 
 

An increase in particle density implies that the total 
energy is divided up among many particles. This 
results in a decrease in energy per particle with an 
increase in particle density. 

4.     Conclusion 

For a hard-sphere assembly of crystalline bosons 
with close packing (CP), particle densities decrease 
with an increase in hard-sphere diameters for a 
fixed saturation density. Energy per particle 
increases with an increase in hard-sphere diameter 
but decreases with an increase in particle density. 
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