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A Hard-Sphere Assembly of Crystalline Bosons
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The properties of crystalline quantum hard-sphgetesns of bosons at low and high densities ardedud\t a very
high density, the hard-sphere system approacheg @acking (CP) structure. The ground state eneegyparticle of a
many- boson system of particles is calculated fosezpacking densities. For a hard-sphere dianfisted at 244, it is

found that for a*Heboson system, the low and high densities 428x10°? particles/cn® and6.15x107? particles/cnt,

respectively. Our calculation shows that particengities decrease with the increase in hard-spiiaraeters when the

saturation density is fixed 20x10%8 particles/ m>. The energy per particle also increases with lsaitere diameter, but

it decreases with particle density.

1. Introduction

A hard-sphere system is a many body system in
which the particles interact via a pair-potential
containing short-ranged and very large repulsive
part. At low densities, the particles experience th
attractive potential only weakly, whereas at high
densities the repulsive part predominates and in

such a case, the assembly can be considered a hard-

sphere system. In general, the hard-sphere system
can serve as a reference (or zero-order) system in
perturbative theories. For example, this scheme is
the familiar thermodynamic perturbative theory [1]
in classical statistical physics that describes
classical fluids. The Quantum Thermodynamic
Perturbative Theory (QTPT) has been developed
[2] to obtain the quantum hard-sphere equation of
state for physical densities of systems sucfHas
The effort here is to study the properties of
guantum hard-sphere systems at different densities,
particularly densities resulting in the crystaltina
of a hard-sphere boson assembly.

At very low density, the energy E of N-identical
boson system is given by [3]
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Where, p is the particle number dens(tp = Vj
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m is the mass of each boson amds the s-wave
scattering length [4] of the pair potential between
128 andC, =8(4—7T—\/§j
157 3

For a hard-sphere systemreduces to hard-sphere
diameter C. The series in Eg.1 is not a power
series, and it breaks down at moderate and high
densities, including the saturation liquid densitie
of “He.

At very high density, the hard-sphere system
can go to close packing (CP) independently of
statistics. This packing may either be random or
regular. For such a system the ground state energy
can be written as
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Where, A, called the residue, is a dimensionless
constant, andop is the proper CP density. Using

the polyhedron cell method [5], the valuefohas
been predicted theoretically [6] to lie within the
rigorous range,

163< A<270 3)
for regular CP (face-centred-cubic, FCC, or
hexagonal-close-packing, HCP) by generalizing the

exact calculation for a simple cubic (SC) lattice
based on three mutually perpendicular linear

lattices. This gived\=7%. However, the
experimental value oA extracted by Cole [7] from
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the high pressure data Hfle,*He,

D,systems is: AC157+ 06
branch of the equation of state.

H,and

for crystalline

2. Theory

The first attempt to represent the ground- state
energy per particle of an assembly &f >>1
boson hard-spheres for all densities is due to
London [8], who proposed the analytical equation
of state

5
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Where, C= hard-sphere diameterh= 2——1 ,

T

Po =Pcp and pozg is the ultimate density [9]

for a system of classical hard-spheres that closes
packs in a primitive hexagonal, i.e., a face-cextter
cubic (FCC) arrangement. Eqg. 4 reduces to the well
known limiting expressions at both low and high

densities
E 27h?
- - PoC
N - mb

At high density,

E 2l 2 2
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The first term, EQ.5, in the asymptotic form is the
well known Lenz [10] term. EqQ.6 is precisely the
kinetic energy of a point mass m inside a spherical

3
cavity of radius r-c, where rz{ﬂJ is the
p

separation between two neighboring spheres. These
results are obtained by assuming primitive
hexagonal close packing, i.e., hcp or fcc, of the N
cavities.

Recently it was noted [11] that the derivation of
high-density extreme of the original boson by
London [8] (see Eg. 4) contains one fundamental
error related to the neglect of the effective two-

3

2
body mass. This correction gives 2——1 . The
T

new result was designated in [11] as the modified
London equation and which continues to satisfy
Eq.4. The modified London equation (ML)
equation agrees better with the Green Function
Monte Carlo (GFMC) computer simulation of both
the fluid and crystalline branches of the boson
hard-sphere system than the original London
equation.

For boson hard-spheres, Eq.1 can be rewritten
as,

E _2m?

N m

PCe(x) (7)
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Where, ng e (pC3) 2 with,

8 (X) =1+ C;x+C,x%logx? +C3x% +O(x* log x?)

8
Alternatively forx << 1, we may write,

-1
e (X) 0L+ Fyx+F, x?logx? + F3 x? +O(x® log x*)

(9)

Where, theF's are expressible in terms of t@és,
but G, F; and higher-order coefficients are
unknown. For random close packing (RCP), the
densitypo= 0.7160,, which is roughly ten percent
below the classical [13,14] RCP value
of p= 086p, . This is thus the highest CP density
for quantum hard-sphere fluids in the meta-stable
region. Since particles at CP are perfectly loealjz
they lose their indistinguishability so that the
results should be independent of the statisti¢then
limit. It should be emphasized that a regular close
pack (CP) is found in the limit of crystalline
helium, “He.

For hard-sphere bosons at close packing (CP),

i.e., at very low temperatures:\?—I is given by Eq.7.

For this calculation, we shall use two valuepof
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i.e., p=0.776p, andp=086,0,. For, g (X), we

shall only use the series up @, since C; and
higher order terms are either unknown or are very
small and of no physical significance. Thus

€, (X) =1+ C,x + C,x? log x? (10)

1

)a

C= hard-sphere diameter [15] =2.84
For,p,, we could also use the value of
2x10%particles/ci and m=6.646x1024gm

for “He.

Using the above mentioned parameters, the
ground state energy per particle of a many-boson
system of particles can be calculated for close-
packing densities. The results can be compared to a

recent calculation [14] fdtHe. Thus the value of
%we have to work with is
E_2m?

N pClL+C, x+C, x? logx?

(11)

The density at which the hard-sphere assembly may
form CP crystalline structure may be called the
saturation density and denoted dyy. At this

density,E will be maximum such that

5.,
9p P=ps

This will give the value ofp = p,at which a hard-

sphere assembly of bosons can form a crystalline
structure. Using this value gf= p,, we can get

12)

%per particle when the assembly of bosons,

assumed to be composed of hard-spheres, forms a
crystalline structure. Using Eq.11, we can write,

0E _2mn? | CC3( syt
» m c T(PC3) 2+, +10g )
(13)
-1
Using Eq.12 and the fact thabg(pc3)2 is very

small, we shall get,

3
ct 3
=p.C (14)
4c2 7°
Or,
c’
P (15)
* acic?

In our case, the ultimate density at which an
assembly of hard-spheres that close packs (CP) is
thus given by, and it can be compared with the

earlier [9] such valug, . Simultaneously, the value
of % will be calculated from Eq.11 by replacing
p byp. By varying the hard-core diameteC'*

we can get different values fqo, and%.

There could be some objection to our using
Eq.1 or Eqg.7 for studying the properties of an
assembly of hard-spheres that forms a crystalline
structure since such a system has to be of high
density, whereas Eq.7 is applicable to a low dgnsit
system. But for comparison and rough estimates,
we could use Eg.1 or Eq.7 and assume that these
equations could be reasonably accurate from zero
through physical densities. However, calculations
using Eq.6, which is the equation for a high densit
system, are also given below.

Using Eq.6 we can write,

0E\_| 72 |[ Nn? (-2) _gl_ _51_3 -1 ;34

o) | 1|l 2m PP [?)p
23

(16)

At p:ps,(g—E) =0 and hence Eq.16 leads to
P ) p=p,

the result thatp=p,and this is the fundamental

condition for a high density system leading to Eq.6
Hence for a high density system, Eq.6 will be used

to get the value ofﬁ at the density = pozg.
Again by varyingC, we can get different values

for%. From Eq.15, the value ofpo for a low

density system is

. c? !
ps(low density =——+— = 0—937
4C C

17)
c?
For a high-density system, the valueafis,
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P (high density= p, :F =3 (18)

Comparing Egs.17 and 18, it is clear that the value
of p.for a high-density system is more than that

for a low density system as it should be.
For C = 2484, we get

ps(low density = 423x10?2 particles/cm®  (19)

05 (high density = 615x10?2 particles/ cm®  (20)

3. Resultsand discussion

3.1 Calculation of the variation of particle
density p with hard-sphere diameter C

The calculations are done for saturation density

i.e., the density at which the hard-sphere assembly
may form crystalline structure. Considerations are
given to both low and high density. Referring to
Egs.17 and 18

097

Ps (lowdensity = F

Ps (high density = 1_431
C
The values of C were taken to vary from 2.fo
2.84A in steps of 0.025%. Table 1 below shows
the variation of low density and high density for
different values of hard-sphere diameter C.

Table 1
HARD-SPHERE LOW SATURATION DENSITY HIGH SATURATION DENSITY
DIAMETER, C () %1079 particles/ m3 x10%° particles m®

2.100 1.047 1.523
2.125 1.011 1.469
2.150 0.976 1.419
2.175 0.943 1.37
2.200 0.911 1.324
2.225 0.8806 1.28
2.250 0.8516 1.238
2.275 0.8238 1.197
2.300 0.7972 1.159
2.325 0.7718 1.122
2.350 0.7474 1.086
2.375 0.7241 1.053
2.400 0.7017 1.02
2.425 0.6802 0.9887
2.450 0.6596 0.9588
2.475 0.6398 0.93
2.500 0.6208 0.9024
2.525 0.6025 0.8759
2.550 0.585 0.8504
2.575 0.5681 0.8258
2.600 0.5519 0.8022
2.625 0.5363 0.7795
2.650 0.5212 0.7577
2.675 0.5068 0.7366
2.700 0.4928 0.7164
2.725 0.4794 0.6968
2.750 0.4664 0.678
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The graph below shows the variation of saturation
density with the hard-sphere radius.

Variation of particle density with hard-sphere diametre
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Fig.1: Variation of saturation density with harchspe
diameter.

Series 1: The curve for low saturation density.

Series 2: The curve for high saturation density.

There is a non-linear decrease in particle density
with an increase in hard-sphere diameter. For a
uniform volume, an increase in hard-sphere
diameter means fewer particles are confined and
hence a decrease in the particle densities.

3.2 Calculation of variation of energy per

particle % with the hard-sphere diameter C

In this calculation, use was made of Eq.11, which
is given as

27h?
m

= pSC[1+ C,x+C,x%logx?

E
N

1

Where, x= (pC3)5.

The following constants were used in the
calculations:-
128
C, =——=
'oasin
c.-{-1)

m= 6.646x1072'kg

h = 10545710734 Js

In order to study the variation of energy per
particle with C, we need to keep the saturation
density fixed at some value, say

ps = 20x10?® particles/ m*.

The following table was obtained for the
variation of energy per particle with hard-sphere
diameter C.

Table 2: Values of energy per particle with hartiesp

diameter
HARD-SPHERE | ENERGY PER PARTICLE
DIAMETER ,C (A) % (x10722 joules)
2.100 2.0512
2.125 2.0756
2.150 2.1000
2.175 2.1245
2.200 2.1489
2.225 2.1733
2.250 2.1977
2.275 2.2221
2.300 2.2465
2.325 2.2710
2.350 2.2954
2.375 2.3198
2.400 2.3442
2.425 2.3686
2.450 2.3981
2.475 2.4175
2.500 2.4419
2525 2.4663
2.550 2.4907
2575 2.5152
2.600 2.5396
2.625 2.5640
2.65 2.5884
2.675 2.6128
2.700 2.6373
2.725 2.6617
2.750 2.6861

Below is the graph that was obtained from the
calculations.
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Variation of Energy per particle with Hard-Sphere diametre
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Fig.2: Variation of energy per particle with haiphsre
diameter.

When the hard-sphere diameter is increased, then
fewer particles will be confined in a fixed volume.
The total energy is then shared by fewer particles
resulting in an increase in energy per particle.
3.3. Calculation of variation of energy per
particle with particle density

The equations and constants used in this case were
similar to those calculations in Sec. 3.2. However,
in order to study the variation of energy per [eti

with particle density, it was necessary to keep C
fixed at some value. The chosen value for the hard-
sphere diameter was

C= 284x10¥%m

The table below shows the values that were
obtained.

Table 3: Variation of energy per particle with [pee
density.

DENSITY, p ENERI(EBY PE_F\;SFTARTICL E,
(x10?7 particleg m®) N (><10 JOUleSJ
1.62 1.661
1.563 1.681
1.506 1.701
1.449 1.721
1.392 1.741
1.335 1.760
1.278 1.780
1.221 1.800
1.164 1.820
1.107 1.839

1.050 1.859
0.993 1.879
0.936 1.899
0.879 1.919
0.822 1.938
0.765 1.958
0.708 1.978

Below is the graph for the same.

Variation of Energy per particle with particle density
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Fig.3: Graph showing the variation of energy petipia
with particle density.

An increase in particle density implies that thilto
energy is divided up among many particles. This
results in a decrease in energy per particle with a
increase in particle density.

4. Conclusion

For a hard-sphere assembly of crystalline bosons
with close packing (CP), particle densities deaeas
with an increase in hard-sphere diameters for a
fixed saturation density. Energy per particle
increases with an increase in hard-sphere diameter
but decreases with an increase in particle density.
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