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In this series of two papers we construct quasileggpolyhedra and their duals which are similathe Catalan solids.
The group elements as well as the vertices of tighpdra are represented in terms of quaternionthd present paper, we
discuss the quasi regular polygons (isogonal astdxal polygons) using 2D Coxeter diagrams. Inipalar, we discuss the
isogonal hexagons, octagons and decagons deriwed2D Coxeter diagrams and obtain aperiodic tiliogthe plane with
the isogonal polygons along with the regular pohgowWe point out that one type of aperiodic tiliofgthe plane with
regular and isogonal hexagons may represent a atagmpheme, where one carbon atom is bound tetheighboring
carbons with two single bonds and one double b@velalso show how the plane can be tiled with tiestione of them is
the isotoxal polygon, dual of the isogonal polygéngeneral method is employed for the constructiohthe regular and
quasi regular prisms and their duals in 3D dimemsigith the use of 3D Coxeter diagrams.

1. Introduction

The discovery of graphene [1], an infinite sheet of
carbon atoms [2], tiled with regular hexagons
invokes further investigations regarding the tiling
of the plane with triangular symmetries suitable fo
carbon bondings including the double bonds with
neighboring carbon atoms. Graphene has always
been studied in the state that the carbon atoms for
a honeycomb lattice, where the edges of the regular
hexagons represent the single bonds with the
neighboring atoms and the fourth valence electron
is uncoupled. Of course, there is o priori
convincing argument that the carbon may not form
a double bond with one of the neighboring carbon
atom to resulting in a neutral state. When this
happens, the double bond will be slightly shorter
than the single bond leading to a deformation ef th
regular hexagon. Then a natural question arises as
to whether it is possible to tile the Euclideanngla
suitable for this type of bonding. The answer is.ye
This was the main motivation for us to work on the
constructions of the quasi regular polygons in 2D
dimensions with Coxeter symmetries. The quasi
regular polygons are of two types: the isogonal
polygons consisting of two alternating unequal
edges with equal interior angles; the isotoxal
polygons consisting of equal edges but with
alternating unequal interior angles. The isotogonal
polygon with 2n sides is vertex transitive undeg th
dihedral symmetr{p, .  Its dual polygon, the iso-
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toxal polygon, is edge transitive under the same
symmetry. Tiling of the plane with the isogonal and
the isotoxal polygons is an interesting problem by
itself. As we will see in this paper that the tijinf

the plane by two tiles, the isogonal hexagons and
the regular hexagons, is possible and which could
be considered as a state of graphene if two bond
lengths are chosen properly. Whether this
phenomenon materializes in a graphene state is not
important from the point of view of the study oéth
quasi regular polyhedra possessing the Coxeter
symmetries. The topic deserves investigations
because it seems that it has not been worked out in
the literature in the context of Coxeter symmetries
In addition to the quasi regular polygons, we also
work out the structures of the quasi regular prisms
and their dual solids possessing the Coxeter
symmetrieD xC,. The paper is organized as

follows.

In Sec. 2, we introduce the Coxeter diagrams
for 2D and 3D dimensions [3] describing the root
spaces as well as their dual spaces. The roots and
the reflection generators with respect to the @ane
are represented by quaternions [4]. Earlier we have
constructed the regular and Archimedean 3D
polyhedra and their duals, the Catalan solids with
guaternions [5]. In Sec. 3, we construct some even-
sided polygons with alternating two edge lengths
(isogonal polygons) having equal interior angles.
We also construct their dual polygons (isotoxal
polygons) with equal edge lengths but with
alternating two interior angles. These quasi regula
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polygons possess the Coxeter symmetries obtained
from the 2D Coxeter diagrams. We work, in
particular, with the three-fold, four-fold and the
five-fold Coxeter symmetries and construct regular
as well as quasi regular polygons invariant under
these symmetries. We give tilings of the plane with
isogonal and isotoxal hexagons, octagons and
decagons with the constraint that at each vertex we
have two quasi regular polygons together. With this
approach, we observe that in the case of
W(A,) = D, symmetry the Euclidean plane can be

tiled by two isogonal hexagons having two
different edge lengths and a regular hexagon all
sharing the same vertex. This configuration may be
regarded as the neutral graphene state, where the
long edges represent the single bonds and short
edges represent the double bonds. The quasi regular
polygons with dihedral symmetrie8V/(B,) =D,

andW(H,) = D, are also constructed and the tiling

of the plane with the isogonal and isotoxal octagon
and decagons are discussed. In Sec. 4 we extend
algebraic approach to the constructions of the
regular and quasi regular prisms and their duals.
The method is such that the regular prisms and
their duals can be reproduced with a suitable &oic
of a relative scale factor. The group elements and
the vertices are represented by quaternions. Sec. 5
is devoted to the concluding remarks.

2. 2D and 3D Coxeter Diagramswith
Quaternions

All Coxeter diagrams are represented with one type
of simple roots [3] contrary to the Dynkin diagrams

representing the Lie algebra root systems having
long and short roots. In 2D space, we have an
infinite number of Coxeter diagrams as shown in

Fig. 1. It is customary to use the notatidngn) for

the 2D Coxeter diagrams, however, we will
continue using the notations,,B,,H, for I,(n),
whenn= 345, respectively.

n
o—o

Fig.1.The Coxeter diagranh, (n) for 2D dimensions.

Here,n represents the integers with= 2345....
This means that the angle between the simple roots

a,and a, is MT We choose the norm of the
n

roots vV2 to be consistent with the Dynkin

diagrams when they coincide. The Cartan matrix

42

defined by the scalar produ@, = (ai,aj) of the

2D diagrams and its inverse
(c)=(w. @), j=12) will read
2 2codN D7
= n
ZCOSMT 2
n
2 _2codN=7

C_l = ; n

4sin2w oM )

n
(2)

The fundamental weightgy are the basis vectors
of the dual space defined by the relation
(a,,w,) =9, [6], where J, is the Kronecker delta.

The simple roots and the fundamental weights are
related to each other by the relations:

@=(C")a;, a=Cuw (2

Summation over the repeated index is implicit.
Action of the reflection generatar on an arbitrary

vector A is defined by the relation

(no summation ovei)

3)

rN=N-(\,a,)a,

They generate the dihedral grolp, of order 2n
satisfying the relationst” =r? =(r,r,)" =1.

The groups generated by reflections, which
represent the symmetries of the regular and quasi

regular prisms, are given by the Coxeter diagrams
depicted in Fig. 2.

n
o—o °

Fig.2.The Coxeter diagrams for prisms.

The symmetry group of the prisms and the quasi
prisms are given by the group, 6 xC, of order

4n. The group elements of the rank-2, rank-3 and

rank-4 Coxeter groups can be represented by the
quaternions [4,5]. There is an interesting relation

between the finite subgroups of quaternions and the
Coxeter groups of ranks 2,3,4.
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Let q=q,+qge, (i=123) be a real unit
guaternion

with its conjugate defined by
g=0q,+qge and the normqg =qq=1. Here the

guaternionic imaginary units satisfy the relations

€€ = _5ij +£ijk kl(i! J!k = l2,3) (4)
Where, ¢, is the usual Levi-Civita symbol and

summation over the repeated indices is implicit.
The correspondence between the usual quaternionic
imaginary units and ours are given by
i=e,j=e, k=e,. We define the scalar product

of two real quaternions as

(P.@) = (Pa+Tp) 5)

If we choose the simple roots in terms of the
quaternions a, =2, a, =\/§exp[e1(n—1)n/ nj

anda, = \/Eez , one can obtain the Cartan matrices
for the dihedral groups given in Egn. 1 as the sub-

matrices of the Cartan matrix for prismatic
symmetries, which is given by
2 2008107
n
C =| 2c0sN=D7 2 o ©
n
0 0 2

Its inverse is given as

i . _cosn~D7 1
0
Zsinzi(n_l)ﬂ Zsirfi(n_l)ﬂ
n n
_(n-Dm
ool % 1 o |60
Zsinzi(n_l)ﬂ Zsirfi(n_l)ﬂ
n n
0 0 1
2
i J

When A and a, are represented by quaternions, the
equation (3) can be written as

43
A :—lai/_\ai =4 a, ,-a. '\ ()
2 2
or abstractly, we define the generators [4],
(8)

r=[i _i]ﬂ
V2 2

Here the roots are complex numbers for 2D
diagrams, a subset of quaternions, where the unit

complex numbersy, /42 and a, /\/Egenerate the

cyclic group of orden; however, the generators in
Eqgn. 8 generate the dihedral group of order 2

Similarly the unit quaternionmg/\/i, a2/\/§

and a3/\/§generate the dicyclic group of order
2n, but the reflection generators,r, and r,
generate the grou, xC, of order 4. The root
system of the 2D Coxeter diagram can be
constructed in a simple manner in terms of

guaternions. Letq=exp(e17—T) be the unit
n

quaternion. Then all integer powers af,
{g*,k=12,...,2n}, constitute a scaled copy of the
root system of 2D Coxeter diagram. If
/A represents any quaternion, the generators act on
N\ as follows:

r, =[L-1",r,A = -A,

(n—l)n_ (n-1)m

Qb ey QDT
rzz[e no,-e " },rz/\=—e " Ne ",

r, =[e,—e,],r,A=-e,\e, (9)

3. 2D Coxeter Diagramsand Quasi Regular
Polygons

To construct the weights of the irreducible

representation of the Lie algebra one starts vhiéh t
highest weight. 1§y is the Lie algebra of rankthen
the highest weight

AN=aw +a,w, +...+aw =(a,,a,,...,a) (10)

is represented by thenon-negative integers [7].
Applying the Coxeter-Weyl group/N(g)on the
highest weight, one can generate the equivalence
A —orbit=0O(A) =W(g)A . In order to obtain all
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the weights of a particular representation of the L
algebra, one should use the Weyl's [7] formula that
involves  several orbits. But the orbit
O(A) represents a single orbit describing a

polytope (quasi regular in general)lidimensional
Euclidean space. In 2D space, the orbits of the
Coxeter group are either regular polygons or even-
sided quasi regular polygons. In what follows, we
will discuss the orbits of the Coxeter groups with
n= 2345. We remark here that there does not
exist any correspondence between any Lie algebra
for the Coxeter diagram&i=5and n=7. Since

we shall be dealing with the 2D diagrams, in what
follows, it is appropriate to determine the versice
of the polygons in terms of complex numbers. The
fundamental weights can be written as

(n-Ymr
_i 1_ Co I’l ) w —_ el
‘Ul—ﬁ( elsinm_nl)”, Z—J—Zsin@r

(11)

A general vertex A=aw +a,w,is then an
arbitrary complex number, which can be written as

1 1 (h—m
= — +e ——— (- +
A =—la+e—r—g(-acos a,)]
Ssin——
n
(12a)
and the generators act as follows,
_ o 2"
IN=-Nr,A=-e " A\,
ey LY
rr,A=e " Ar,rA=e " A (12b)
It is clear from (12b) that

r12 = rz2 :(r1rz)n :(rzrl)n =1.

The 2n vertices of the polygon can be
determined as

27K 27K

(rr) A=e A () (AA=—e" A,
(13)

For a, =a,=a the 2 vertices of a regular

polygon of edge Iength/ia are given in terms of
complex numbers by a simple formula

44

i
—(n-1+4k
€1 2n("l )

a
\/Eco{(n_l)ﬂj
n

us
= (n-1+4k
e12.1(n +4k)

k=12,...,n (14)

& .
J2cod (D7
n
Now we deal with the special cases.

31 n=2 with D, =C, xC, symmetry

Two simple roots a'lzx/iand azzx/iel,
representing the Coxeter diagramA O A, are

orthogonal to each other, where the generators form
the Klein's four-grou, =C,xC,. A general

orbit is obtained by acting the group elements on
1
V2
dealing with the Lie algebra, it is not necessary t
restrict the values ofa, to non-negative integers.

They can be any real number in general. However,
we will follow the highest weight technique when

the Coxeter diagrams coincide with the Dynkin

diagrams. ForA=w, = (@10) and A=w, = (0],

the orbits are two segments of straight lines
perpendicular to each other. The orbit

OAN=w, +w,)=0(1) involves the vectors

the vector, A =—(a, +ea,). Since we are not

%(tliel)which form a square. For all 2D
2

Coxeter diagrams, when the orbit is derived from
the vectorA =a(w, +w,) =a(l), wherea is an
arbitrary real number, then the polygon has an
additional symmetry. It is the symmetry of the
Coxeter-Dynkin diagram, which can be defined by
the generator y:a, - a, leading to a larger
symmetryW(g):C, where (1) denotes the semi-
direct product of two groups. In the above case the
group isD, =(C, xC,):C,=C, :C', of order 8.
When we consider the most general case,
namely, A =a,w, +a,w,, the orbit represents a
rectangle of sides/Eal,\/Eaz. The rectangle is an
isogonal polygon with thd, symmetry. The dual

of the rectangle is a rhombus (an isotoxal polygon)
whose vertices can be determined by taking the mid
point of one of the edge of the rectangle, say, the
vector aw,. We take the other vector

Aw, bisecting the edge of Iength/Ea1 of the
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rectangle. To determine the dual of the rectangle
the line joining these vectorslw, = a,w, must be

orthogonal to the vecto\ =a,w, +a,w,, which

27721
2

determines the scale facto?:i. The vertices,
a‘2
which consist of two fundamental orbits

O(a,0) ={*a,w} and AO@0) ={+Aw,}, represent
a rhombus. The ratio of lengths of the diagonals of

the rhombus is & .

aZ
transitive under the Klein's growp xC,and its
dual, the rhombus, is edge transitive. For theeglu
a, =1 and a, =2 the rectangle and its dual

rhombus are given in Fig. 3.

The rectangle is vertex

@ (b)

Fig.3.The rectangle (a) and its dual rhombus (b)
possessing the symmely = C, xC, .

32 n=3 with W(A) =D, = S,;symmetry

The Coxeter grouW(A,) = D, = S, consists of six
elements. The three elements,r,,rrr, =1,rr,

represent reflections with respect to the lines
orthogonal to the roots,, a,, a, + a,, respectively,

1 O
and the rotational group elementdr,r,and
(r,r,)? represent the cyclic groufs, which rotates
the system b%20°. We have two fundamental
orbits 000 ={w,w, -w,,~w,} and
00) {w,,~w,w, —w,}. Each orbit represents
an equilateral triangle, dual to each other whieh a
transformed to each other by the Coxeter-Dynkin

diagram symmetry.
The orbit O@1=0(w, +w,)represents a

regular hexagon, which has a larger symmetry
because of the diagram symmetwy. a, - a,.

Then we obtain the full symmetry group
D, :C, =D,of the regular hexagon. The regular
hexagonal orbit can also be obtained from the
Coxeter diagram with n=6 by applying

theD, =W(G,) generators on the either weight

0@0 =W(G,)w, or OO0 =W(G,)w,, where

45

w,and w, are the weights of the Coxeter diagram
G,. Now we discuss the orbit obtained from the
vector A =a,w, +a,w,, where a, #a, #0. The
Coxeter groupV(A,) generates the six elements of
the orbit O(A) =O(a,a,) arranged in the counter

clockwise order as follows:

O(al,az) :{/\l’ /\21 /\31 /\41 /\ 51 /\ 6}
where

N =aa, ta,a,, N\, =-aae +(a +a,)a,,

N, =—(a, +a,)w +aw, A\,

Ne=a,w, —(a +a,)w,, A\, =(a, +a,)w, - a,w,
(15)

=—q,0, —aw,

They can also be obtained as complex numbers
from Eqn. 13 by substituting =3 in Eqn. 11.

These vectors represent the vertices of an
isogonal hexagon withi20° interior angles and the

alternating edges of Iength&a1 and \/Eaz.

The dual of the isogonal hexagon is an isotoxal
hexagon in which the edges are equal, however, it
has two different alternating interior angets and
[ such that,a + =240 . The vertices of the
isotoxal hexagon lie on two fundamental orbits
O(a,0) and AO@©). The scale factotis

determined by the relation

N, -aw).(aw+aw)=0 = ;= a(2a+3)
a +2a,
(16)

Let a,w, represent the center of one of the edges of

the isogonal hexagon. The vertices of the isotoxal
hexagon can then be written in the counter
clockwise order as follows:

{Bl :ala)l'BZ =Aw,,B :al(_a)l +a)z)'

2773

(7)
B, =_/]a)1’ B, =-aw,,B, =/](a)1 _wz)}

Defining /7=i one can check that the edge

length of the isotoxal hexagon is given by
1
Al (7’ -+ (18)

We have two different interior angels given by
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a= Cos_lw B = (;0_51L27+2
207 -n+1)’ 20 -n+1)
19)
One can prove that for an arbitrary

n,a+pB=240. The isogonal hexagon and its

dual isotoxal hexagon are shown in Fig. 4 for the
valuesa, =land a, =2.

(@) (b)

Fig.4. The isogonal hexagon (a) and its dual isaltox
hexagon (b) possessing the dihedral symméry

One can tile the plane with regular hexagons and
isogonal hexagons with the constraint that two

isogonal hexagons and one regular hexagon share

the same vertex regardless of the values,ofind

a,. One type of tiling of the plane is shown in Fig.
5a with the valuesy, =1and a, = 2. Another tiling

is shown inFig. 5b for the isogonal hexagon for
a, =2 and a, =1. Inthelimita, - 0 anda, =1,

the isogonal hexagon turns out to be an equilateral
triangle and such tiling is depicted in Fig. 5c.eTh

other extreme limit is shown in Fig. 5d, where
a =land a, - 0. The honeycomb lattice

corresponds to the case wheae=a,, which is

shown in the Fig. 5e. The honeycomb lattice
representing the tiling of the plane with regular
hexagons possesses translational invariance,ghat i
to say, it is invariant under the affine Coxetesigy

VV(AZ) . However, the tilings represented by Figs.

5a- 5d violate the translational invariance. Such
tilings are said to be aperiodic tiling represegtin
quasi crystal lattice [8]. We anticipate that atnaiu
state of the graphene consisting of infinite numbe
of carbon atoms can be represented by a tiling
similar to the one in Fig. 5a, provided one of the
parameters represents the double bonds @dy

and the other is representing the single borad$. (
Experimentally one expects, <a,, nevertheless

they are nearly equal each other contrary to the
isogonal hexagon inFig. 5a, which is an

46

exaggerated version of this quasi crystal lattik®.

we will discuss in the second paper [9], @Ge
molecule represents tiling of the sphere with
isogonal hexagons and the pentagons for it has two
bond lengths.

@

(©) (d)

(e)

Fig.5.Tiling of the plane with isogonal hexagons-regular
hexagons (a,b), regular hexagons and triangledil{oy
with triangles (d) and the honeycomb lattice (e).

Now, the tiling of the plane can also be made with
isotoxal hexagons by joining its two vertices with
two alternating angless and B so that one

obtains an exterior angle of 12t each vertex. Tn
this way, we create a regular hexagon surrounded
by six isotoxal hexagons as shown in Fig. 6. This
tiling is the dual of the tiling irFig. 5a. In this
tiling all hexagons have the same edge lengths.
However, at each vertex the three angles satisfy, a
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expected, the relation a + 8 +120° =360°. Here
again wheryy - 1 we obtain the honeycomb lattice
of Fig. 5(e).

Fig.6. Tiling of the plane with isotoxal and regular
hexagons.

3.3 n=4 with W(B,)=D, symmetry

We can repeat similar arguments raised for
n=3case. Also in the case, we have two
fundamental orbits

000 ={w,~&, +v2w,~w, @ ~v2w} (20a)

009 ={w,,~w, +v2w ~w,, @, -v2w} (20b)

Each orbit represents a square.

The orbit O(w, +w,)=0@1 is a regular
octagon possessing the symmetd,:C, =D,.
One can tile the plane with regular octagon and the
square as shown in Fig. 7.

L AR 2R 2

L 2R 2R 4

Fig.7. Tiling of the plane by regular octagons and
squares.

The general orbit O(A)=0(aa,) with
a, Zza, z0 is an isogonal octagon with interior

angles 13%  Isogonal octagons are vertex
transitive under the dihedral groDp. The vertices

of the isogonal octagon can be computed in a
simple manner as follows. The vertex
1
V2

complex number and the reflection generators act

N=aw+aw = -=[a +(a +J2a,)e] is a

47

on A asr,A=-A andr,A=e/A . We determine

the vertices of the dual of the isogonal octagon by
finding the scale factorA from the equation,

(Aw, —a,w) {a,w, +a,w,)=0, which leads to

+
the valueA =m. Defining 7 =i we
(a, ++/2a,) a,
obtain the edge length of the isotoxal octagonmive
by Eqgn. 18. The vertices of the isotoxal octagon is

the union of the orbitsO(a,0) andAO@©01) . The
alternating  angles  satisfy the  relation,
a+p=270.

The isogonal octagon with values, =1 and
a, =2 and its dual isotoxal octagon are depicted in
Fig. 8.

(@) (b)

Fig.8. The isogonal octagon (a) and its dual isattox
octagon (b).

The tiling of the plane with two isogonal octagons
and one square at each vertex is shown in Fig. 9a.
The tiling of the plane with two isotoxal octagons
and one square at one vertex is shown in Fig. 9b.

(@) (b)
Fig.9. Tiling of the plane by isogonal octagonsdajl
isotoxal octagons (b) with squares.
34 n=5with W(H,)=D,symmetry

This case corresponds to the Coxeter group,
W(H,)=D,, the dihedral group of order 10. Here

the Cartan matrix and its inverse corresponding to
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the Coxeter diagrand, can be written in terms of

1+£ 1—£ as

the golden ratior =——— and o =
2 2

2 - 2
C= "l and cr=—1 I e
-7 2 2+0|r 2

The orbit of a general vectoh =a,«w, +a,w, can
be obtained as the set of 10 vectors:

O(a,.a,) ={A, =a,q +a,w,,
N, =@ +(ar+a,)w,
A= +m,)w +1(a +a,)w,

N, =-1(a +a,)w + (& + @, )w,,

Ns==(m +a,)w +taw, N\, =-a,0 —aw,
N, =a,w —(a, +a,Nw,,

N =(m +8,)u —1(a +a,)w,

N =1(a, +a,)w — (R, +a,)w,,

N = (8, +1,)@ ~a,w} (22)

The fundamental orbitsO@0) and O@Q1) are
obtained by lettinga, =1,a, =0and a, =0,a, =1,
respectively, in Egn.22. The fundamental orbits are
the regular pentagons which are the duals of each
other. The regular decagon is obtained by letting
a =landa, =1in Egn. 22. The regular decagon is

both vertex and edge transitive under the dihedral
group W(H,):C, =D,, because of the diagram
symmetry.

The tiling of the plane with five-fold symmetry
is introduced by Penrose [10] for the plane cannot
be tiled only with regular pentagons. It has been
recently shown that the Islamic tiling of the plane
[11] with five-fold symmetry dates back to the
medieval time. The Islamic architecture used five
different tiles, decagon, pentagon, rhombus,
nonregular hexagon and bow tie. Here, we give in
Fig. 10, one of those tilings of the plane with
regular decagons and bow ties. The tiling in F. 1
displays locally a dihedral symmetiy/(H,) =D, .

48

Fig.10. The tiling of the plane by regular decagand
bow ties.

One can also construct an isogonal decagon

represented by alternating edge Ieng’&@a1 and

\/Eaz with a, Za, 20 in (22). Its interior angles
are all equal to 144 Note that the isogonal
decagon is vertex transitive under the Coxeter
symmetry, W(H,)=D,. One such isogonal
decagon is shown in Fig. 11a corresponding to the
alternating edge lengths fa, =1 anda, =2. The
dual of the isogonal decagon is the isotoxal
decagon with equal edge lengths but with
alternating anglesg + 3 =288 . Its vertices lie on
two fundamental orbits of the Coxeter group
W(H,)=D,, say, O(a,0) and O(04), where A is

determined as usual given M=M.
(72, +2a,)
The edge length of the isotoxal decagon is given by
Eqn.18, where 7 =M. The isotoxal
(2, +2a,)

decagon is shown in Fig. 11b.

(a) (b)

Fig.11. The isogonal decagon (a) and its dual the
isotoxal decagon (b).

One type of tiling of the plane with isogonal
decagons is shown in Fig. 12.
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Fig.12. Tiling of the plane with isogonal decagons.

The above type of tilings of the plane can be
extended for the isogonal polygons derived from
the Coxeter symmetries far>7.

4. 3D Coxeter Diagramsand Quasi Regular
Prisms

The Coxeter diagrams for the prismatic symmetries
are discussed in Sec. 2. In this section, we déscus
the constructions of the regular and quasi regular
prismatic solids and their dual solids. Before we
proceed further, we note the following interesting
aspect of the dicyclic groups of quaternions. Let

q =ex;{e1 Ej be the unit quaternion of ord@n.
n

We have noted in Sec. 2 that the set 21f

guaternions obtained by taking all integer powers
of g constitute a scaled root system of the 2D
Coxeter diagram of rank 2. Let us define the unit

. T . :
quaternion byq'= ex;{e1 —jez. It is clear from this
n

definition that the new set ofn quaternions
constitute a scaled copy of another 2D Coxeter
diagram of rank 2orthogonal to the first one as
shown in Fig. 13.

n n

o o [] o—»
Fig.13. The Coxeter diagrar, (n) O I, (n) of rank-4.

It is interesting to note that the elements of the
dicyclic group of quaternions constitute the root
system of this rank-4 Coxeter diagram. The
automorphism group of the diagram in Fig. 13 can
be represented as the set of elements construsted a
pairs of quaternions, multiplying an arbitrary
qguaternion from left and right, selected randomly
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from the set of elements of the dicyclic group of
guaternions. The root system of the rank-4 Coxeter
diagram can be represented by the quaternions

Root Systemof, ( M1, ( ¥ ¢“ ¢* ;k= 1,2,..12
(23)

Let sandt be an arbitrary element of the set of
Eqgn. 23. Then, the automorphism group of the set
LM O 1,(n) ={d" g% k=12,...,)can be written
as

Aut(l,(n) O 1,(n) ={[st] O[st]'},

StO{1,(M O 1,(n} (24)

This is a group of ordednx4n. When,n=3, the
automorphism group of Egn. 24 is of order 144 and
for n=5it is of order 400. We have noted in an

earlier paper [12] that both groups are the maximal
subgroups of the Coxeter groufY(H,) of order
14,400. It was also shown that the group
Aut(H, OH,)={[st]0[st]'}is the symmetry
group of the grand antiprism [13].

Here we are interested in rank-3 groups which
describe the symmetries of the regular and quasi
regular prisms and whose Coxeter diagrams are
given in Fig. 2. Of course, the prismatic
symmetries are the subgroups of the groups defined
in Egn. 24. A general vertex of a quasi regular
prism is given by

N=a,w, +2,w, +a,w, =

L ai+e1;(—aicosw+aj+ae
V2 sin(n_l)ﬂ n 2 o

n

(25)

For arbitrary values o&,,a, and a, the vertices of

the quasi regular prisms are obtained by the group
action D xC,on the vector Ain Eqgn. 25.

However, when they are all equal then the vertices
of a regular prism are obtained by adding

a . . .
+ —e,to the vertices given in Egn. 14. Below, we

N

discuss some of the prismatic groups in turn.
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41 n=2 withthe D, xC,symmetry

For this case, we have the simple roots
allﬁ=lazlﬁ=ely,a3/\/§ez. The Coxeter

group can be represented as the direct product of
the cyclic groups of orders 2

C,xC,xC,={[a,q]O[a,al'}, (26)
qOQ ={£1zte e, xe}

Here, Qis the quaternion group of order 8. Let us

consider the orbit of the vector,

N=aw +a,w, +a,w,. The orbit wil be a

rectangular prism with edge lengthes # a, # a,

multiplied by\/E. For a, =a, =a, we obtain a
cube and fora, =a, #a, a square prism. Dual

solids of the prisms discussed above are in general
quasi dipyramids with the base being a rhombus for
the casea #a, #a, and the faces are scalene
triangles. The dual of the square prism with
a, =a, #a, is the dipyramid with the isosceles

triangular faces. It is obvious that the dual o th

cube is the octahedron which has a larger
octahedral symmetry.

42 n=3 withthe D, xC, symmetry
In this case, the Coxeter group is
W(A, O A)=D,xC,. The Lie group associated
with  this diagram represents the group

VU ExU(2). It is the Standard Model of the

high energy physics with the inclusion of the gauge
group U (@) . The first orbit we wish to discuss is

the

W(Az u Al)(w1+w3) :{wliws(wz_w) tTw,-wt wk
(27)

This is a triangular prism as shown in Fig. 14as It
vertex transitive.

Dual of the triangular prism in Egqn.27 is a
dipyramid with the triangular base, where the
vertices are given bjw,, w, - a)z,—a)l,:r%a%} . Six
faces are isosceles triangles with equal edgetiengt

\/g and the other is/2 . Itis depicted in Fig. 14b.
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@ (b)

Fig.14.The triangular prism (a) and its dual dipyramid
(b) (top view).

The orbit W(A, O A)(w, + w,) leads to another
triangular prism, which is the mirror image of the
one in Egn. 27 with respect to the =0 plane.
The orbit WA OA)w +w, +w,) is the
hexagonal prism as shown in Fig. 158imilarly,

the dual of the hexagonal prism is a dipyramid with
a hexagonal base, where the vertices are given by

{i w,tw, ¥ (w, - a)l),iZa)s}

1=

(28)

The faces of the dipyramid are isosceles triangles

with the equal edge Iength% and the other

is\/%. It is shown in Figs. 15b and 15c.

@ (b)

(©)

Fig.15.The hexagonal prism (@) its dual dipyramid (b)
(top view) and (c) (side view).

With a general vecto\ =a,w, + a,w, +a,w,, the
orbit W(A, O A)(A) represents a quasi regular
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hexagonal prism consisting of two parallel faces of
isogonal hexagons with two edge lengths and
a,, three rectangular faces with edges,a,) and

the three rectangular faces with edgés,a,) .

Here we dropped a scale faci® in the edge
lengths. The dual of this quasi regular prism is a
dipyramid with isotoxal hexagonal base and
scalene triangular faces. The prism and its dual
with the valuesa, #a, #a, #0 are given in Figs.

16a-16¢.

(b)

(©

Fig. 16. The isogonal hexagonal prism: (a) and its dual
the dipyramid with a basis of isotoxal hexagon (fiop
view) and (c) (side view).

4.3 n=4 withthe D, xC,symmetry

The Coxeter group for this case is
W(B, O A)=D,xC,of order 16. One of the

fundamental orbits is given by the set of vectors
W(B, 0 A)(@,+ wy) ={*w,* w, H~w,+2w) + w}
(29)

which represents a cube. Its dual obviously is the
octahedron with the vertices
{2, H~w, +2w), +2w} (30)

Similarly, another fundamental orbit is given bg th
set of vectors
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W(B, 0 A)(@, + @) ={£w, + @, H{~w,+2w) + w}
(31)

which is a rotated cube by %&round thew, -axis
with respect to the first cube.

The orbitW(B, O A)(a,w, +a,w, +a,w,)is a
prism with two parallel isogonal octagons with
scaled edge length&,,a,) , four rectangular faces

with edges(a,,a,) and four rectangular faces with
edges (a,,a,) . Note that whena, =a, =a,the
octagonal prism is uniform meaning that all the
edges are equal. The dual of the uniform octagonal

prism is the dipyramid with isosceles faces and
regular octagonal base.

44 n=5 withthe D, xC,symmetry

The Coxeter group for this case is
W(H, O A)=D, xC, of order 20. Of two orbits,

W(H,OA)@ +w,) and W(H, 0 A)(w, + w,)
each represents a pentagonal prism, one is rotated
with respect to the other by %&round thew, -axis.

The dual of a pentagonal antiprism is the dipyramid
with a pentagonal base and 10 isosceles triangles.

T
Two equal edges are of Ieng% and the
2(2+0)

third one o#/2 . Similar arguments can be used to
discuss the quasi regular prism with isogonal
parallel decagons and rectangular faces.

5. Conclusion

We have displayed a method to construct the quasi
regular polygons and their duals, as well as the
quasi regular prisms with their duals using the
rank-2 and a subset of rank-3 Coxeter diagrams,
respectively. The isogonal polygons wih sides
and their duals isotoxal polygons possess the
dihedral symmetry. We have shown that the tiling
of the plane with two tiles, one is the isogonal or
isotoxal polygon and the second is another tile
depending on the symmetry of the quasiregular
polygon, can be constructed. It is tempting to
suggest that the tiling of the plane by the isogona
hexagon and regular hexagon may represent a state
of graphene, where double bond and single bonds
can be represented by two edges of the isogonal
hexagons. We have constructed a number of
isogonal polygons with their duals possessing
various dihedral symmetries. The corresponding
tilings of the plane with the tiles chosen as iswo
and isotoxal polygons are studied.
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The Coxeter symmetrie® xC, are used to [13] M. Koca, M. Al-Ajmi and N. O. Koca, J.
construct the regular as well as quasi regular Phys.A: Theor. Mathi2, 495201 (2009).
prisms. Their duals, the quasiregular dipyramids
are also constructed. We have also pointed out the
correspondence between the Coxeter symmetries
and the finite subgroups of the quaternions.
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