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Using the well known pseudo-potential method fer ptasma (HEO), with the variation of different plasma parameter
when Landau damping is neglected, we investigated bompressive and rarefactive solitary waves ¥iftit-order (¢, )
and second-orderg,) soliton profiles for the isothermal case, and coesgive solitary waves with firsg(, ) and second
(¢,) order soliton profiles for non-isothermal casefdat mode for the cases of isothermal and non-<sotal collision-

less single electron temperature plasma with cokltipe and negative ions (including drifts), natufhese are shown in

Figs. 1-4, respectively.

1. Introduction

The effect of higher order non-linearity on the
propagation of non-linear ion acoustic waves in a
collision-less plasma consisting of cold drifting
positive and negative ions with either isothernral o
non-isothermal electrons is very important in
plasma physics. Compressive and rarefactive
solitary waves in different types of plasmas have
been extensively investigated by a large number of
physicists [1-14] in a cold ion plasma with singte
two electron species in modern plasma theory, and
they studied in detail the conditions of compressiv
and rarefactive solitary waves for both small and
large amplitude. In presence of negative ions, the
rarefactive solitary waves were also investigated
theoretically by many authors  [15-17]
incorporating different plasma parameters and
experimentally by Cooney et al. [18]. The effect of
negative ions on ion-acoustic solitary waves is
more interesting than that of positive ions and two
temperature electrons. So we take negative ions in
addition to that of positive ions, and single
temperature electron in the basic equation with
special attention to velocities of both positivedan
negative ions, including their drifts. As a resoft
this, the rarefactive solitary waves are found for
suitable negative ion concentration.

In the present paper, we investigate mainly the
effect of negative ion concentration and drift
velocities of both positive and negative ions loa t
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formation of ion-acoustic solitary waves withaol
positive and negative ions. In a three-component
plasma consisting of electrons, positive and
negative ions, Tagare et al. [19] investigated the
effect of higher order non-linearity on the ion-
acoustic solitary waves with cold ions in isothekma
and in non-isothermal electrons by reductive
perturbation method. We consider here the same
problem in a different way with an emphasis on the
drifts of both positive and negative ions by
Sagdeev pseudo-potential method, which is more
interesting than the previous one. Generally, two
types of modes, namely a slow ion-acoustic mode
and a fast ion-acoustic mode are found in an ion-
acoustic solitary wave solution. The interesting
case is that of the fast mode nature of solitons,
which is observed in this problem and from which
compressive and rarefactive solitary waves are seen
due to the effect of negative ions concentration.
Sec. 2 contains the required formulations where the
exact pseudo-potential form and conditions for
compressive and rarefactive solitary wave solutions
are derived for single temperature electron plasma
without using any approximations. The first-order
(d,) and second-ordetp§) solitary wave solutions
for the compressive solitary waves are also
discussed in this section. The phase velocity (V) f
the bi-quadratic equation is discussed in this
section. In Sec. 3, we have discussed the entire
problem and concluding remarks are given in Sec.
4.
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2. Formulation

The normalized basic plasma fluid equations with
cold positive ions, cold negative ions and hot
isothermal electrons in an infinite one-dimensional
collision-less un-magnetized plasma are given by

Continuity Equation

ONe 0
= o (Nxue) =0 1)

Momentum Equation

Qo | Dt T O

ot Y« 5 T o ox (2)
Poisson’s Equation

62

% = Ne - Zo( Zo(No( (3)

Where,Q, (= m/m, , m, = mass of negative ion,
m, = mass of positive ion)V, , U« , Z« , d and N

are the mass ratios of negative to positive ion
masses, density, velocity of ions, charge of ions,
electrostatic potential, and concentration of
electrons. Moreover,

Zy, =1,Q4 =1forx = p (p = positive ion)
Zy=-2Z,Q, = Q forx = n (n = negative ion)

In the above equations from (1) to (3), we have
normalized the velocities (u,) by the

characteristics velocity[% , all the densitiesN\,)

by the equilibrium value Nand the length by the
electron Debye length of free electroag, =

KT, . . .
—>~—, whereas the electric potentiap is
4me<“Ny

normalized by%, so that the equations appear

totally in dimensionless form. Here K is the
Boltzmann constant, .T denotes the constant

temperature of the free electron and m is the mass

of positive ion.
The boundary conditions are

Uy = Usg N = Nug, @0 as [x| -0 (4)
And the charge neutrality condition is
Zo(Zo(NO(O =1 (5)

For solitary wave solution, we use the

transformation
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n=x-Vt (6)

Where, V is the velocity of the solitary wave. From
Egns. (1), (2) and (3), we get finally after usi6y
and (4)
Ny = 2 )
1— 2Zx
e (V-t1ec0)?

Again, from Eqn. (7) the restriction @nis
LV —u)? <h <V —wpp)?  (8)

Where, u,, and u,, are the drift velocities of
positive (p) and negative (n) ions. Relation (8ais
very important inequality. The physical
interpretation of inequality (8) is that the safjta
waves are found only when the electric potengial
lies within the range of the inequality (8).

(a) Isothermal Case: In this case, the electron
density is N = e? and then by using Eqns. (7) and
(6), we get from Egn. (3),

Zx Noco

dZ(I) ¢
—_—= - 9
=" T 9)
Qe V-uu0)?
Now Eqn. (9) can be written in the form
2o _ o (10)
dn? ap

Where

V@) = 16t + MoVt {1 = [1- 2]
) 22¢)
+ZQNp,o (V=tpg) [1 - \/%]

(11)

The functiony (¢p) is real for such values ap,
whered satisfies the inequality (8) and beyond that
value of, the Sagdeev pseudo-potential function
Y (d) is complex. Moreover, the compressive and
rarefactive solitary waves are found from the
graphical representation ¢f(¢) for those values of
¢ which satisfy inequality (8) and the condition
(16).

Now the condition for compressive solitary
wave solution is

Y@ >0 at b=g, . b, >0 (12)
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Where,qu1 is a value ofp lying in the range of
the inequality (8).
By using Eqn. (11), relation (12) gives

|e¢m1_;]|
L mg
L V-upo)?| (13)
24 2Zd,
L/ " =upo?? j  qmuno 2]
Where,N,, = 1 + ZN,, (see Eqn. (5)).

Similarly, the condition for rarefactive solitary
wave solution is

Nypo >

4

W@ <0 atp=d,, b, <0

Where, quz is that value of¢ which satisfies
inequality (8).
By using Eqn. (11), the above inequality gives

]
(V=1po)Z] (14)
.

|1 2(b'mz 14 2Zd)mz |
[ v—wpo? | Te-uno)?]

Where, Ny, = 1 + ZN,, (see Eqn. (5)).
The condition for the existence of solitary wave
solution is

|ed)m2_
!

Nyo < [

1

2
% <0 atp=0 (15)
The above inequality (15) gives,

Z2%Nno Npo
+ <1 16
Q(V-upo)? (V_upo)z ( )

Now from Egn. (10), expandingy(¢) in power
series ofp and noting that

Y(@)=0= 2" atg=0

9
we get
d? 9
i AU KoY SR SR R

17)

Where,

201

— Npo Z%Nno
Cl - 1 - 2 - 2
V-upo) Q(V—uno)
1 3Npo 323Ny
C=>(1- _ 4 27— 4
2 (V-upo) Q*(V—uno)
_1 15Npo 15Z*Npg
C3=-|1- _ 6 37— 6
6 (V-upo) Q°(V-uno)
11 35Npo 35Z%Np
* T3 - | Q*(V-uno)®

. 1[1 63Npo 63Z°Npo ]
ST s[5 oo QP(V-ung)

Taking terms up t@® from Eqgn. (17), the first
order K-dV solitary wave solution [20] is obtained

as
b, = 2—2 Sech? (\/% n> (18)

Again taking terms up tg® from Eqn. (17), the
higher order M-KdV solitary wave solution [20] is
obtained as

6Cy

b, = (19)

2C,+ [4CZ-18C1C3 2Cosh2< /%n)—l]

The phase velocity (V) is obtained from Eqn. (16)
by the equation

V4'2(up0 + uno)VS

2 2 Z%Nno\ 1,2
+(up0 + Upg + 4Upolng — Npo — Q" ) %4

Z?Npolpo
+2 (T — UpoUho — uﬁoun0 + Npolno |V

Z2Npou?
2 2 2 nolpo ) _
+<up0un0 — Npolpg — — L2 ) =0
(20)

This is a bi-quadratic equation in V and gives four
values (real or imaginary).

We are now focusing the effects of drift
velocities of both ions, which are classified into
four different cases:

Case 1. Motion with unequal ion-drifts

When the drifts of both positive and negative ions
are present with unequal magnitudes g, #
une # 0, then we get from Egn. (20)
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V4 - 2a3V3 + a2V2 + 2a1V + ag = 0
Where,
as = upo + Uno

Z%Nno
Q

- 2 2
a; = Upo +Upe + 4up0un0 - Npo -

Z2Npoupo

a =
1 Q

2 2
— UpoUno — UpoUno + Npouno

Z2Npou?
— 2 2 2 no*po
Ao = UpoUno — Npouno - 0

The four values of V from the above bi-quadratic
equation are obtained as follows:

V=2[(as = A) + (= az)? — 40z — 2)]

V= [(a3 —M) - \/(Al —az)?— 44, — /13)]

N

V==[(as + A0) + O + a5)? — 4(h, + 43))]

V=>[(as + A — J(hy + a5)? — 40, + 13)]
Where,

A =a-a,+21,

MAs =as+ Ayas

2 _ 92
A3= 25— qg

Az

fGae VAR + o
1

VER e

1
14‘ :g az(ao + a1a3)
1

3.1 2 2
+—a, - aga apga a
108 2 2( %2 0“3 1)

3
As :%[3(% + aja3) + %a%]
Case 2: Motion with equal ion-drifts

When the drifts of positive and negative ions are
equal in magnitude i.€uy, = u,, = U (say) = a non
zero number, then we get from Egn. (20), the
soliton velocity as

292

Or,
_ Z2Npo
V=u+ [Ny + 0
and
Z2Nno

V=u- [Ny +
And the inequality, Eqn. (9), then reduces to the
following form

v-uw)?
2

_Q-w?

Py <<

Case 3: Motion with only positiveion drift

When the drift of negative ion velocity is absent
i.e.,uyo = 0 withN,,, = 0, then the soliton velocity
with positive ion drift is obtained from Eqn. (183

V>u,,+1
ie.,

V> u, +1
and

V> Upo_ 1

This inequality is more general than Ref. [21]. In
the absence of positive ion drift velocity i.@,, =

0, the above inequality turns into V > 1 (taking
positive sign only) and this supports Ref. [21]eTh

inequality given by Eqgn. (9) then reduces to the
form

0< <5 (V—w)’

Case 4: Motion without ion-drifts
When the drifts of positive and negative ions are
absent i.ea,o = 0 andu,, = 0, then we get from

Egn. (20), the soliton velocity = /Npo + ZZZ"O

(taking positive sign), which supports Ref. [15Han
the inequality given by Eqgn. (9) then reduces ® th
form

QVz < - VZ
2Z ¢ 2
From the above four cases, we conclude that two
types of modes of the phase velocities are obtained
when drifts are considered. One type is known as



The African Review of Physics (2012)0033

fast mode, and the other type is slow mode. But
two kinds of this mode of velocities are not found
when drifts of both the ions are not considered i.e
motion without drift. This is the novelty of the
drifts of both the ions. Two kinds of these modés o
velocities depend on some parameters. The
parameter determining the nature of soliton (i.e.,
compressive or rarefactive) is different for slow
and fast modes. The fast mode nature is found from
this problem and for that fast mode the parameter i
the relative concentration of the two ion species.
For the fast mode, it is found that there is aaait
value of the negative ion concentratidy,{) below
which only compressive solitons exist and above
which only rarefactive solitons exist.

From the inequality given by Eqn. (16), the
critical negative ion concentrationN(.) is as
follows:

N — Q(V—uno)z[(V—upo)Z—l]
" Z[Z(V-upo)?+Q(V—uno)?]

(21)

Three cases may arise from Eqgn. (21): (a) It iarcle
from (21) that for

V—up=0 or V-u, =1, N, vanishes.

0 _ Q-1
When u,, = 0 = u,, thenN,, = 200)"

_ _ _ Qlv-w?-1]
When u,q = uyo =u thenV,. = ~rzeal

In the presence of negative ion and for isothermal
single temperature electron plasma, the solitary
waves are formed according to the following
conditions:

N,o < N,. (compressive solitary waves)

N,o=N,. (compressive and rarefactive
solitary waves)

N,o > N,. (Rarefactive solitary waves)

Where, N,, is the initial negative ion

concentration andv,. is the critical negative

ion concentration.

(b) Non-isothermal case: In this case, the
equations of cold positive and negative ions are
given by Eqgns. (1) to (3) as before. The expression
for electron density @his given by Schamel (1972,
1973) as

3 5
Ne=1+-Tbygz+- " -=byde +< ¢ +
(22)
Here the potentiah is normalized by (KT/e) and
the electron density, by the unperturbed density
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Ny, where K is the Boltzman constant ang b,
andp are given below:

b1=ﬂ

1-p2 Te
\/;’b2= 3=_f

O Tet

(23)

Here, T is the constant temperature of the free
electrons and J is that of trapped electrons. The
termg b, qb% introduces the contribution of resonant
(both free and trapped) electrons to the electron
density (V.). Whenp =1, i.e., whenb=0and b=
0, the non-isothermal electron reduces to that of
isothermal electron. The casfs= 1 andp = 0
correspond to the plasma having Maxwellian and
flat topped distribution. It is obvious to derivieet
electron density for isothermal plasma by imposing
b, = 0 and b = 0, whereas for non-isothermal
plasma, we haveé < b; < \/iﬁ and 0 < b, < %
(i.e., b =0, b, #0).

Putting the value oN, in Eqn. (3) and using
similarly (4) and (5) with the well known form of

Eqgn. (10), the basic set of Egns. (1) to (3) are
reduced to

1 dpy2 —
S+ V) =0 (24)

Where the Sagdeev potential is given by

— 2 20
Y], V) = Nyo (V —upo) [1 - \/T—upo)z]
) 27
+Z QNnO (V _unO) [1 - m]

5 7
— =3 =B G e
(25)

Forb =0and b=0 (i.e.,p = 1), Eqn. (25) reduces
to the form of Eqn. (11) and in this case we wit g
the same inequality (Eqn. (16)) as a condition for
the existence of solitary wave solution. Only
compressive solitary wave solution is obtained in
non-isothermal plasma and the condition given in
Eqgn. (12) is also satisfied in this case. Simildnjy
using Eqgns. (22) and (7), we get from Eqn. (3)

a*¢ _ 2 2 3 3
bzt A" - At Asg” +...
(26)

Where,

Z2%Nno

N
Ap=|1——2——
! QV—uno)?

(V_upo)z
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=4y =418
A2 - 3 b]_ - 3 vn
A=l [ _3Npo  3Z3Npo ]

72 V=upo)*  QE(V-uno)*

_8 _81-p
A= 15 b, = 15 V&

_1[1_ sNpo  5z*Npo
As=; [3 (V=upo) Q3(V—un0)6] 27)

3
Taking terms up tapz from Eqgn. (26), we get
2 3
= A0~ Ay 2

Thus the first order solitary wave solutifp, ) in
non-isothermal plasma is

b, = (%)2 Sech* (\/;T—; n>

Similarly, taking terms up tg)*> from Eqn. (26),
the second order solitary wave solutigp, ) in
non-isothermal plasma is obtained as

1
b, =575z [342

3 1 942
_\/E (94% — 25A,45) Sech (5 ’Al - 25:377>]4

3. Discussion

By using the Sagdeev pseudo-potential approach,
we observed that negative ions and drift velocities
of ions affect the formation of ion-acoustic saljta
waves in the plasma [22]. For the plasma’(B@
corresponding mass ratio Q = 4 and the restriction
N,o < N,,. , the ion-acoustic solitary waves under
different plasma parameter variation are
investigated. In all cases the fast mode naturk wit
compressive and rarefactive solitary waves are
seen. These results are shown in Figs. 1 and 2.

In Fig. 1, the Sagdeev pseudo-potential curves
[Y(g)vs.p] of compressive solitary waved ¢0)
in the isothermal case are shown with the variation
of positive and negative ion drift velocities
[upo,uno] @nd negative ion concentration,,,) for
the plasma (Hg O) having the constant mass ratio
Q =4 whenV =1.5and Z = 1. Curves representing
‘a;’ and ‘a,’ show the variation of drift velocities
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[upo = 0.4,upg = 0.2;u,e = 0.4,u,, = 0.299] of
the compressive solitary waves for isothermal
plasma whenV =15, Q =4,,=0.05and Z = 1.

It is evident from these figures that when drift
velocities are increasing, the amplitudes are also
increasing.

Again, the curves represented lay’; ‘a,’ and
‘a;’ show the variation of negative ion concen-
tration [N, = 0.05, 0.06, 0.07] of the compressive
solitary waves for isothermal plasma when V = 1.5,
Upo = 0.4,uy = 02, Q =4 and Z = 1. The
amplitude in this case decreases when negative ion
concentrationN,, increases, and the amplitude
increases even in the absence of negative igp (
= 0) for the same plasma.

Rarefactive solitary waves(< 0) are obtained
in the presence of negative ion by the well known
restrictions N, > N, where N, is the initial
negative ion concentration aij,. is the critical
negative ion concentration. For the plasma’(K®y
corresponding to the mass ratio Q = 4, the
rarefactive solitary waves are investigated in a
collision-less single temperature electron plasma.
These results are shown in Fig. 2.

Fig. 2 shows the profiles of the Sagdeev
pseudo-potential curvdg (¢)vs. p] of rarefactive
solitary waves ¢ < 0) in isothermal case with the
variation of negative ion concentratioW,() and
drift velocities of positive and negative ions
(Upo) Uno) fOr (He", O) plasma having mass ratio Q
= 4 with V = 1.5 and Z = 1. Curves representing
‘c;’, ‘¢’ & ' ¢3’ show the variation of negative ion
concentration N,, = 0.25, 0.30, 0.35] of the
rarefactive solitary waves for isothermal plasma
when V = 1.5u,, = 0.4,u,,= 0.2, Q=4 and Z =
1. From these figures, it is clear that as negatine
concentrationN,,, increases §,, = 0.25, 0.30,
0.35), the amplitude of the rarefactive solitary
waves { < 0) decreases, which is the same as in
the case for compressive solitary wavés X0).
Also the curves represented by & ‘ ¢,” show
the variation of drift velocities of positive and
negative ionsi,, = 0.4,u,, = 0.2;up = 0.3,upg
= 0.21] of the rarefactive solitary waves for
isothermal plasma when V = 1.5, Q =N}, = 0.25
and Z = 1. When the drift velocities of both
positive and negative ions are increasing,[ =
0.5,up = 0.3 andu, = 0.48,u,, = 0.29] with V =
1.5, the amplitudes are also increasing as in the
case of compressive solitary waves.
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We now discuss the nature of the Sagdeev
pseudo-potential curves for non-isothermal plasma
from Eqn. (25). In this case, we only investigéte t
compressive solitary waves and no rarefactive
solitary waves. These results are shown in Fig. 3.

In Fig. 3 the profiles of Sagdeev pseudo-
potential curves [Y(¢)vs.¢p] of compressive
solitary waves ¢ >0) for non-isothermal plasma
are shown with the variation of drift velocities of
positive {1,,,) and negativew,,) ions, negative ion
concentration {V,,) and the ratios of constant
temperature of free electrons to the constant
temperature of trapped electrof$ {or the plasma
(He", O) with Z = 1, V = 1.5 with the constant
mass ratio Q = 4. From the profiles of Sagdeev’s
pseudo-potential curve represented by ‘a’ anditc’,
is evident that when the drift velocities of positi

296

ions (up,) are increasing, the amplitudes are
decreasing, while the drift velocities of negative
ions (u,) remain unchanged. This contradicts the
isothermal case. Also the curves represented by
‘b’, ‘c’ and ‘d’ give us the important result, whic
states that the amplitude in this case are decigasi
when the negative ion concentrationV,{, ) is
increasing. But in absence of negative idh (=

0), the amplitude will be maximum. Curves
represented by ‘c’, ‘e’ and ‘f’ show that wh@nis
increasing, the amplitudes are also increasing for
the above plasma in non-isothermal case. Bup for
= 1 the non-isothermal situation turns into
isothermal case and the profiles ¥€g) in this
case coincide with Fig. 1, which is an interesting
phenomena.

a— b — ¢ d— e

-0.00005 -

-0.0001

-0.00015 -

-0.0002

-0.00025 -

-0.0003

-0.00035 -

0.14 0.16

0.12

Fig.3

Now, the effect of first-orderg(,) and second-
order @,) solitary wave solution of ion-acoustic
solitary waves in a collision-less plasma consgstin
of positive and negative ions, and single
temperature electron plasma are shown in Fig. 4
with the variation of different plasma parameters.

Fig. 4 shows the profiles of first-ordep () and
second-orderd,) solitary wave solutionsf], vs.n
and ¢,vs. n ] of non-isothermal plasma for
compressive solitary wavesg (>0) with the
variation of drift velocities of positiveu,,] and
negative u,,] ions as well as the variation of
negative ion concentratiomVf,) and the variation
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of the ratios of constant temperature of free
electrons to constant temperature of trapped
electrons f§) for the plasma (HeO) with V = 1.5,

Q =4, and Z = 1. In Fig. 4(a), curves represented
by h;, hs, h, hs show the variation of drift
velocities of positive and negative ions,{ = 0.4,

Ung = 0.2;upo = 0.3,u,, = 0.21] of the first and
the second order compressive solitary waves for
non-isothermal plasma when V = 1.5, Q N4, =
0.05,=0. 1 and Z = 1. It is found from this figure
that the second order soliton solutigh, ) has W-
type shape, bup, andg, are everywhere positive.
The values ofp, are increasing fom,, = 0.3,u,o

= 0.21 than fou,, = 0.4,u,, = 0.2 up to a certain
value ofn and after that it does not follow so.
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Again, the values ofg, are increasing fom,, =
0.3,upo = 0.21 than that af,, = 0.4,u,, = 0.2.

In Fig. 4(b), curves represented by h,, hs, hy
also show the variation of negative ion
concentration N,,, = 0.05,N,,, = 0.07] of first and
second order compressive solitary waves for non-
isothermal plasma when V = 1.5, Q =4, = 0.4,
Upe =0.2,=0.1and Z=1.

In the variation of negative ion concentration
(N,,,) for (He', O) plasma, the second order soliton
solution @,) has W-type shape, bui, andg,
have all positive values except 5 with V =
1.5,Q = 4,8 = 0.1,uy0 = 4, upy =0.2,Npo =
0.07andZ = 1up to a certain value aof, where
[n|< 3 for which some values @k are negative.

7
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Fig.4(a)
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4, Concluding Remarks in the two-component plasma consisting of

We have investigated the ion-acoustic soliton & th
plasma consisting of cold positive ions, cold
negative ions and warm electrons by pseudo-
potential method for both isothermal and non-
isothermal cases. Generally, the two types of
modes of solitary waves are observed. One is slow
and the other is fast ion-acoustic mode. The fast
mode nature is obtained here and is discussed with
special attention of negative ion concentration
(N,o) with respect to that of critical negative ion
concentration §,,.). It is very interesting to note
that in fast ion-acoustic mode compressive solitary
waves are found foN,, < N,. and rarefactive
solitary waves are observed fi,,> N,,.. The
first-order ¢,) and second-ordeg(,) compressive
soliton potentials for the plasma (K@) have been
found in non-isothermal cases with different
plasma parameter variation as shown in Fig. 4. It
has an interesting W-type shape. The compressive
and rarefactive solitary wave profiles are shown in
Figs. 1 and 2 for isothermal case. But in the non-
isothermal case, only the compressive solitary
wave profiles are found as shown in Figs. 3 and 4.
Ichikawa et al. [23] studied the effect of higher
order non-linearity on ion-acoustic solitary waves

electrons and positive ions. Tagare et al. [21htbu
the same higher order non-linearity on ion-acoustic
solitary waves in a collision-less three-component
plasma consisting of negative ions, positive ions
with either isothermal or non-isothermal electrons
by reductive perturbation method . We have taken
the same plasma model of Tagare et al. [21] with
the interesting drift concepts with pseudo-poténtia
technique. It is now difficult for us to comparesth
theoretical result with experiment because no such
experiment is known to have been conducted with
drift motion and for this plasma model. This work
may be on the theoretical investigation of
conduction of solitary waves specially in
conducting solid medium that can be thought as the
plasma medium under a special condition. This
type of work on the propagation of ion-acoustic
solitary waves through a conducting wire may lead
to some tremendous application advantages in
signal communications. We now plan to study the
ion-acoustic solitary waves at critical densitytiod
negative ions with temperature in isothermal and
non-isothermal electron plasma with their
respective drifts.
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