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In this paper, adaptive control theory is utilized to derive nonlinear controllers for the synchronization of two

identical and non-identical hyperchaotic systems with unknown parameters. Based on the Lyapunov stability theory,

the adaptive control laws for synchronization controllers associated with adaptive update laws of system parameters are

developed to make the states of two identical and non-identical systems asymptotically synchronized. The feasibility

of the obtained results are validated with numerical simulation.

1. Introduction

The study of nonlinear dynamical systems and
chaos have become a subject of great interest and
it has attracted enormous research interest after
the first numerical demonstration of chaotic phe-
nomenon by Lorenz [1]. Chaotic systems are asso-
ciated with complex dynamical behaviors that pos-
sess some special features including bounded tra-
jectories with positive Lyapunov exponents; and
sensitive dependence on initial conditions. The
study of chaotic dynamics has found applications
in various branches of scientific and engineer-
ing disciplines, including information processing,
power converters, biological systems and chemical
reactions etc. Another important area that have
been widely studied in nonlinear dynamics is hy-
perchaotic systems. These are systems that are
characterized with more than one positive Lya-
punov exponents and thus generates more complex
dynamics than the low dimensional chaotic sys-
tems. Therefore, they possess broader applications
particularly in secure communications wherein the
presence of more than one positive Lyapunov ex-
ponent have been utilized to improve the security
of communications [2].

The year 1990 marked a turning point in the
study of chaotic dynamics when Pecora and Car-
roll [3] put forward the idea that two chaotic sys-
tems evolving from different initial conditions can
become synchronized. The main idea of synchro-
nization is to make the states of slave system track
the states of the master system as the time t ap-
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proaches infinity. In view of its potential appli-
cations in secure communications and surveillance
(see [4] and the references therein), the phenom-
ena of synchronization have been extensively stud-
ied in the context of laser dynamics, electronics
circuits, biological and chemical systems [5]. Till
now, different types of synchronization have been
observed in the interacting chaotic systems, such as
complete synchronization, CS [3], generalized syn-
chronization GS [6], phase synchronization PS [7],
lag synchronization LS [8], anti-synchronization
AS [9], and so on. For an excellent review of
various types of synchronization, the reader is re-
ferred to the book by Pikovsky [10]. At the same
time, many advanced theories and methodologies
have been proposed for controlling chaotic syn-
chronization of some types of chaotic/hyperchaotic
attractors. Notably among these approaches are
backstepping design methods [11, 12], active con-
trol methods [13], adaptive synchronization meth-
ods [14–16], linear state error feedback control ap-
proach [17], sliding mode control methods [18], and
so on. The adaptive control methods for synchro-
nization of chaotic/hyperchaotic systems is based
on the numerous variants of adaptive control for
chaotic/hyperchaotic systems. The approach has
been applied extensively for synchronization of hy-
perchaotic systems (see Refs. [14, 15] and refer-
ences therein). In fact, adaptive methods for chaos
synchronization have demonstrated some capabil-
ities of extracting information from unknown sys-
tems.

The need to evaluate unknown parameters in
models of nonlinear physical, biological and engi-
neering systems is of vital importance and rele-
vant for various scientific and engineering applica-
tions particularly in model predictions. In order
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to estimate unknown parameters of nonlinear sys-
tems, synchronization shows promise in estimat-
ing the desired parameters. Furthermore, it has
been shown that global identifiability considers the
issue of uniquely estimating all the free parame-
ters of a model from experimental data [19]. If a
model is non-identifiable, the estimated parame-
ters will lead, irrespective of the applied method,
to artifacts in the model calibration and errors
in subsequent model predictions. Thus, there is
a fundamental need for reliable methods for esti-
mating the unknown parameters in nonlinear sys-
tems. In view of the above mentioned points,
the present study is therefore geared towards uti-
lizing the adaptive techniques to design some
novel nonlinear controllers for chaos synchroniza-
tion of identical and non-identical hyperchaotic
systems with unknown parameters using Lü [20]
and Lorenz-Stenflo (LS) [14] hyperchaotic systems
as paradigms. Based on the Lyapunov theorem of
stability and adaptive control laws, nonlinear syn-
chronization controllers and controllers associated
with the adaptive update laws of parameters are
developed for estimating the unknown parameters
in identical and non-identical hyperchaotic systems
of interest.

The rest of the paper is structured as follows.
In Section 2, adaptive synchronization of identical
hyperchaotic Lü system with unknown parameters
is presented while Section 3 is devoted to adap-
tive synchronization of hyperchaotic LS systems
with unknown parameters. In Section 4, we de-
rive the control laws and numerically demonstrate
adaptive synchronization of non-identical Lü and
LS systems wherein the parameters of the drive
Lü system are known while the parameters of the
response LS system are unknown. Finally, the con-
cluding remark is given in Section 5.

2. Adaptive Synchronization of Identical

Hyperchaotic Lü System

In this section, we shall present both theoretical
and numerical simulation result for adaptive syn-
chronization of two hyperchaotic Lü systems evolv-
ing from different initial conditions.

2.1. Controller design

Here, some adaptive control laws and parameter
update laws for synchronization of identical Lü sys-
tems [20], where the parameters of both the drive
and response systems are unknown.

Let us consider drive hyperchaotic Lü system
given by [20]:

ẋ1 = −α(x1 − x2) + x4,

ẋ2 = γx2 − x1x3,

ẋ3 = x1x2 − βx3,

ẋ4 = x1x3 + ηx4 (1)

Where, xi (i = 1, 2, 3, 4) are the state variables and
α, β, γ and η are the unknown parameters of the
system.

As the response system, we consider the con-
trolled hyperchaotic Lü dynamics described by

ẏ1 = −α(y1 − y2) + y4 + u1,

ẏ2 = γy2 − y1y3 + u2,

ẏ3 = y1y2 − βy3 + u3,

ẏ4 = y1y3 + ηy4 + u4 (2)

Where, yi (i=1,2,3,4) are the state variables and
ui are the nonlinear controllers to be determined.

The Lü hyperchaotic system governed by Eqn.
(1) has been shown to exhibit rich varieties of dy-
namical behaviour including hyperchaotic motion
- depicted in Fig. 1 - with the following parameter
settings α = 36, β = 3, γ = 20 and η = 1.0
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FIG. 1: Phase portrait of the chaotic attractor of the hy-

perchaotic Lü system with the following parameters α =

36.0, β = 3.0, γ = 20.0 and η = 1.0.

Let us define the synchronization error as follows

e = yi − xi. (3)

By subtracting Eqn. (1) from Eqn. (2) and apply-
ing the definition of error system in Eqn. (3), one
readily obtains a time varying error system:

ė1 = α(e2 − e1) + e4 + u1,

ė2 = γe2 − y1e3 − x3e1 + u2,

ė3 = y1e2 + x2e1 − βe3 + u3,

ė4 = y1e3 + x3e1 + ηe4 + u4 (4)
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Let us define the adaptive control functions ui, (i =
1, 2, 3, 4) as follows:

u1 = α1(e1 − e2) − e4 − k1e1,

u2 = −γ1e2 + y1e3 + x3e1 − k2e2,

u3 = β1e3 − y1e2 − x2e1 − k3e3,

u4 = −η1e4 − y1e3 − x3e1 − k4e4 (5)

Where, α1, β1, γ1 and η1 are estimates of α, β, γ

and η respectively, and ki (i = 1, 2, 3, 4) are non-
negative constants.

By substituting Eqn. (5) into Eqn. (4), we ob-
tain

ė1 = (α − α1)(e2 − e1) − k1e1,

ė2 = (γ − γ1)e2 − k2e2,

ė3 = −(β − β1)e3 − k3e3,

ė4 = (η − η1)e4 − k4e4 (6)

We define the parameter errors as:

eα = α−α1, eβ = β−β1, eγ = γ−γ1, eη = η−η1

(7)
Substituting Eqn. (7) into Eqn. (6), the error
dynamics simplifies to

ė1 = eα(e2 − e1) − k1e1,

ė2 = eγe2 − k2e2,

ė3 = −eβe3 − k3e3,

ė4 = eηe4 − k4e4 (8)

From Eqn. (7) we note that

ėα = −α̇1, ėβ = −β̇1, ėγ = −γ̇1, ėη = −η̇1 (9)

Let us consider a positive definite quadratic Lya-
punov function V defined by

V (e) =
1

2
(e2

1
+e2

2
+e2

3
+e2

4
+e2

α+e2

β +e2

γ +e2

η) (10)

Differentiating Eqn. (10) along the directions of
the error trajectories (8) and using Eqn. (9), we
obtain

V̇ = −k1e
2

1−k2e
2

2−k3e
2

3−k4e
2

4 +a1 +a2 +a3 +a4

(11)
Where, a1 = eα[e1(e2−e1)−α̇1], a2 = eγ [e2e2−γ̇1],

a3 = eβ [−e3e3 − β̇1], a4 = eη[−e4e4 − η̇1].
Based on Eqn. (11), the estimated parameters are
updated by the following laws:

α̇1 = e1(e2 − e1) − k5eα,

γ̇1 = e2

2 − k6eγ ,

β̇1 = −e2

3
− k7eβ ,

η̇1 = −e2

4 − k8eη (12)

Where, ki (i = 5, 6, 7, 8) are positive constants.
By substituting Eqn. (12) into Eqn. (11), one

readily obtains

V̇ = −k1e
2

1 − k2e
2

2 − k3e
2

3 − k4e
2

4 − k5eα2

−k6eγ2 − k7eβ2 − k8eη (13)

which is a negative definite function on ℜ8

Hence, according to Lyapunov stability the-
ory [21], it is obvious that the synchronization
error and parameter estimation error decay to
the equilibrium point exponentially with time.
Therefore, we have proved the following result.

Theorem 2.1: The identical Lü systems (1)
and (2) with fully unknown parameters will glob-
ally synchronized by the adaptive control law (5),
where the update law for the parameter estimates
are given by (12).

2.2. Simulation Results

In what follows, we examine the effectiveness of
the proposed approach via numerical simulation.
By utilizing fourth order Runge-Kutta routine with
time step 0.001, we solve systems (1) and (2). Nu-
merical simulation was carried out using the fol-
lowing parameter settings: α = 36.0, β = 3.0, γ =
20.0 and η = 1.0. The initial conditions of the two
systems are freely chosen as follows:
(x1(0), x2(0), x3(0), x4(0)) = (0.1, 0.1, 0.1, 0.1) and
(y1(0), y2(0), y3(0), y4(0)) = (−9.9,−4.9, 5.1, 10.1)
The synchronization error between systems (1)
and (2) are depicted in Fig. 2 while Fig. 3
shows that the estimated values of the parameters
α1, β1, γ1 andη1 converge to the system parame-
ters α = 36.0, β = 3.0, γ = 20.0 andη = 1.0, re-
spectively. The controllers are activated at t ≥ 20.

3. Adaptive Synchronization of

Identical LS Systems

In this section, we present adaptive synchroniza-
tion of identical hyperchaotic LS system.

3.1. Controller design

Here, some adaptive control laws and parameter
update laws for synchronization of identical LS sys-
tems [14] are presented, where the parameters of
both the drive and response systems are unknown.

Let us consider a drive hyperchaotic LS system
of the form [14]:
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FIG. 2: Synchronization dynamics of identical hyper-

chaotic Lü systems. The controllers are activated at t ≥ 20
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FIG. 3: Parameter estimates of α1, β1, γ1 andη1

ẋ1 = a(x2 − x1) + bx4,

ẋ2 = x1(c − x3) − x2,

ẋ3 = x1x2 − dx3,

ẋ4 = −x1 − ax4 (14)

In Eqn. (14) xi (i = 1, 2, 3, 4) are the state vari-
ables and a, b, c, and d are the unknown param-
eters of the system. The state orbits of LS sys-
tem - depicted in Fig. 4 - is hyperchaotic when
the parameter values are a = 1.0, b = 1.5, c =
26.0, and d = 0.7

As the responding system, let us consider the con-
trolled LS [14] dynamics described by

ẏ1 = a(y2 − y1) + by4 + u1,

ẏ2 = y1(c − y3) − y2 + u2,

ẏ3 = y1y2 − dy3 + u3,

ẏ4 = −y1 − ay4 + u4 (15)

Where, yi (i=1,2,3,4) are the state variables and
ui are the nonlinear controllers to be derived.
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FIG. 4: Phase portrait of the Chaotic attractor of the hy-

perchaotic LS system with the following parameters a =

1.0, b = 1.5.0, c = 26.0 and d = 0.7.

Let us define the synchronization error, e, as
follows

e = yi − xi, (i = 1, 2, 3, 4). (16)

By subtracting Eqn. (14) from Eqn. (15) and ap-
plying the definition of error system in (16), one
readily obtains a time varying error system:

ė1 = a(e1 − e2) − be4 + u1,

ė2 = ce1 − e2 − y1e3 − x3e1 + u2,

ė3 = y2e1 + x1e2 − de3 + u3,

ė4 = −e1 − ae4 + u4 (17)

Let us define the adaptive control functions ui, (i =
1, 2, 3, 4) as follows:

u1 = a1(e2 − e1) + b1e4 − k1e1,

u2 = −c1e1 + e2 + y1e3 + x3e1 − k2e2,

u3 = −y2e1 − x1e2 + d1e3 − k3e3,

u4 = e1 + a1e4 − k4e4 (18)

Where, ki (i = 1, 2, 3, 4) are positive constants and
a1, b1, c1 and d1 are estimates of a b, c and d,
respectively.

By substituting Eqn. (18) into Eqn. (17), we
obtain

ė1 = (a − a1)(e1 − e2) − (b − b1)e4 − k1e1,

ė2 = (c − c1)e1 − k2e2,

ė3 = −(d − d1)e3 − k3e3,

ė4 = −(a − a1)e4 − k4e4 (19)

We define the parameter errors as:

ea = a−a1, eb = b− b1, ec = c− c1, ed = d−d1

(20)
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Substituting Eqn. (20) into Eqn. (19), the error
dynamics become

ė1 = ea(e1 − e2) − ebe4 − k1e1,

ė2 = ece1 − k2e2,

ė3 = −ede3 − k3e3,

ė4 = −eae4 − k4e4 (21)

From Eqn. (20) we note that

ėa = −ȧ1, ėb = −ḃ1, ėc = −ċ1, ėd = −ḋ1 (22)

We utilize Lyapunov stability theorem to derive
the update law for adjusting the estimates of the
parameters. For this purpose, let us assume a posi-
tive definite quadratic Lyapunov function V of the
form

V (e) =
1

2
(e2

1
+e2

2
+e2

3
+e2

4
+e2

a +e2

b +e2

c +e2

d) (23)

Differentiating system (23) along with the error
trajectories (21) and using Eqn. (22), we obtain

V̇ = −k1e
2

1
−k2e

2

2
−k3e

2

3
−k4e

2

4
+α1 +α2 +α3 +α4

(24)
Where, α1 = ea[e1(e1 − e2) − e4e4 − ȧ1], α2 =

eb[−e1e4 − ḃ1], α3 = ec[e1e2 − ċ1], and α4 =

ed[e3e3 − ḋ1].
In view of Eqn. (24), the estimated parameters are
updated by the following laws:

ȧ1 = e1(e1 − e2) − e4e4 − k5ea,

ḃ1 = −e1e4 − k6eb,

ċ1 = e1e2 − k7ec,

ḋ1 = e3e3 − k8ed (25)

Where, ki (i = 5, 6, 7, 8) are positive constants.
Using Eqn. (25) in (24), the derivative of the

Lyapunov function becomes

V̇ = −k1e
2

1
− k2e

2

2
− k3e

2

3
− k4e

2

4

−k5e
2

a − k6e
2

b − k7e
2

c − k8e
2

d (26)

which is a negative definite function on ℜ8

Hence, based on Lyapunov stability theory [21],
it is clear that the synchronization error and
parameter estimation error decay to the origin
exponentially with time. Therefore, we have
proved the following important result.

Theorem 3.1: The identical LS systems (14) and
(15) with unknown parameters will globally syn-
chronize by the adaptive control law (18), where

the update law for the parameter estimates are
given by (25).

3.2. Simulation results

Here, we validate the above theoretical analysis
via numerical simulation. Numerical experiments
are carried out using fourth order Runge-Kutta
algorithm with time step 0.001 to solve systems
(14) and (15). We carried out numerical sim-
ulations using the following parameter settings:
a = 1.0, b = 3

2
, c = 26.0 and d = 0.7. The initial

conditions of the two systems are freely chosen as
follows:
(x1(0), x2(0), x3(0), x4(0)) = (0.3, 3.5, 4.2, 1.2) and
(y1(0), y2(0), y3(0), y4(0)) = (1.0,−1.0, 1.0, 0.0)
The synchronization error between systems (14)
and (15) are depicted in Fig. 5 while Fig. 6
shows that the estimated values of the parameters
a1, b1, c1 and d1 converge to the system parame-
ters a = 1.0, b = 1.5, c = 26.0 and d = 0.7 respec-
tively. The controllers are activated at t ≥ 20.
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FIG. 5: Synchronization dynamics of identical hyper-

chaotic LS systems. The controllers are activated at t ≥ 20.

4. Adaptive Synchronization of

Non-identical Hyperchaotic Lü
and LS Systems

In what follows, we present adaptive synchroniza-
tion of non- identical hyperchaotic Lü and LS sys-
tems.

4.1. Controller design

Some adaptive control laws and parameter update
laws for synchronization of non- identical Lü and
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FIG. 6: Parameter estimates of a1, b1, c1 and d1.

LS systems are derived in this section. The hyper-
chaotic Lü system [20] with known parameter is
the drive system while the response system consist
of LS [14] system whose parameters are assumed
to be unknown.

Let us consider drive hyperchaotic Lü system of
the form [20]:

ẋ1 = −α(x1 − x2) + x4,

ẋ2 = γx2 − x1x3,

ẋ3 = x1x2 − βx3,

ẋ4 = x1x3 + ηx4 (27)

Where, xi (i=1,2,3,4) are the state variables and
α, β, γ and η are the parameters of the system.

The response system consists of hyperchaotic
LS [14] dynamics described by

ẏ1 = a(y2 − y1) + by4 + u1,

ẏ2 = y1(c − y3) − y2 + u2,

ẏ3 = y1y2 − dy3 + u3,

ẏ4 = −y1 − ay4 + u4 (28)

Where, yi (i = 1, 2, 3, 4) are the state variables,
a, b, c and d are the unknown parameters of the
system; and ui are the nonlinear controllers to be
derived.

Let us define the synchronization error, e, as
follows

e = yi − xi, (i = 1, 2, 3, 4) (29)

By subtracting Eqn. (27) from Eqn. (28) and ap-
plying the definition of error system in system (29),

one readily obtains a time varying error system:

ė1 = a(y2 − y1) + by4 + α(x1 − x2) − x4 + u1,

ė2 = y1(c − y3) − y2 − γx2 + x1x3 + u2,

ė3 = y1y2 − dy3 − x1x2 + βx3 + u3,

ė4 = −y1 − ay4 − x1x3 − ηx4 + u4 (30)

Let the adaptive control functions ui, (i = 1, 2, 3, 4)
be defined as follows:

u1 = −a1(y2 − y1) − b1y4 − α(x1 − x2) + x4 − k1e1,

u2 = −y1(c1 − y3) + y2 + γx2 − x1x3 − k2e2,

u3 = −y1y2 + d1y3 + x1x2 − βx3 − k3e3,

u4 = y1 + a1y4 + x1x3 + ηx4 − k4e4 (31)

Where, ki (i = 1, 2, 3, 4) are positive constants and
a1, b1, c1 and d1 are estimates of a b, c and d,
respectively.

By substituting Eqn. (31) into Eqn. (30), we
obtain

ė1 = (a − a1)(y2 − y1) + (b − b1)y4 − k1e1,

ė2 = (c − c1)y1 − k2e2,

ė3 = −(d − d1)y3 − k3e3,

ė4 = −(a − a1)y4 − k4e4 (32)

We define the parameter errors as:

ea = a−a1, eb = b− b1, ec = c− c1, ed = d−d1

(33)
Substituting Eqn. (33) into Eqn. (32), the error
dynamics become

ė1 = ea(y2 − y1) + eby4 − k1e1,

ė2 = ecy1 − k2e2,

ė3 = −edy3 − k3e3,

ė4 = −eay4 − k4e4 (34)

From Eqn. (33) we note that

ėa = −ȧ1,

ėb = −ḃ1,

ėc = −ċ1,

ėd = −ḋ1 (35)

We utilize Lyapunov stability theorem to derive
the update law for adjusting the estimates of the
parameters. For this purpose, let us assume a posi-
tive definite quadratic Lyapunov function V of the
form

V (e) =
1

2
(e2

1
+e2

2
+e2

3
+e2

4
+e2

a +e2

b +e2

c +e2

d) (36)
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Differentiating Eqn. (36) along with the error tra-
jectories (34) and using Eqn. (35), we obtain

V̇ = −k1e
2

1
− k2e

2

2
− k3e

2

3
− k4e

2

4

+β1 + β2 + β3 + β4 (37)

Where, β1 = ea[e1(y2 − y1) − e4y4 − ȧ1], β2 =

ec[y1e2 − ċ1], β3 = eb[e1y4 − ḃ1], and β4 =

ed[−e3y3 − ḋ1].
In view of Eqn. (37), the estimated parameters are
updated by the following laws:

ȧ1 = e1(y2 − y1) − e4y4 − k5ea,

ḃ1 = e1y4 − k6eb,

ċ1 = e2y1 − k7ec,

ḋ1 = −e3y3 − k8ed (38)

Where, ki (i = 5, 6, 7, 8) are positive constants.
Using Eqn. (38) in (37), the derivative of the

Lyapunov function becomes

V̇ = −k1e
2

1
− k2e

2

2
− k3e

2

3
− k4e

2

4
− k5e

2

a

−k6e
2

b − k7e
2

c − k8e
2

d (39)

which is a negative definite function on ℜ8

Hence, based on Lyapunov stability theory[21],
it is obvious that the synchronization error and
parameter estimation error decay to the origin
exponentially with time. Therefore, we have
proved the following important result.

Theorem 4.1: The non-identical systems (27)
with known parameters and (28) with unknown pa-
rameters will globally and exponentially synchro-
nize by the adaptive control law (31), where the
update law for the parameter estimates are given
by (38).

4.2. Simulation results

Here, we carry out numerical experiment using
fourth order Runge-Kutta algorithm with time
step 0.001 to solve systems (27) and (28). We
carried out numerical simulations using the fol-
lowing parameter settings: a = 1.0, b = 3

2
, c =

26.0 and d = 0.7. The initial conditions of the
two systems are freely chosen as follows:
(x1(0), x2(0), x3(0), x4(0)) = (0.1, 0.5, 0.2, 1.2) and
(y1(0), y2(0), y3(0), y4(0)) = (1.5,−1.3, 1, 0.5)
The synchronization error between systems (27)
and (28) are depicted in Fig. 7 while Fig. 8
shows that the estimated values of the parameters
a = 1.0, b = 3

2
, c = 26.0 and d = 0.7 converge

to the system parameters a = 1.0, b = 3

2
, c =

26.0 and d = 0.7, respectively. The controllers are
activated at t ≥ 20.
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FIG. 7: Synchronization dynamics of hyperchaotic Lü and

LS systems. The controllers are activated at t ≥ 20
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FIG. 8: Parameter estimates of a1, b1, c1 and d1 for the

non-identical Lü and LS systems.

5. Summary and Conclusion

In summary, nonlinear controllers have been de-
rived for the synchronization of two identical and
non-identical hyperchaotic systems with unknown
parameters. Based on the Lyapunov stability theo-
rem, the adaptive control laws for synchronization
controllers associated with adaptive update laws of
system parameters were devised to make the states
of two identical and non-identical systems asymp-
totically synchronized. The correctness of the ob-
tained controller has been demonstrated. The nu-
merical simulation further shows the effectiveness
of the derived controllers.
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