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On Hexagonal Geometries in Physics and Lie Algebras
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The connection between physics and geometry has led to a better understanding of many open questions in physics

and mathematics. Many of such questions have been explored in the context of quantum field theories, string theory,

quantum gravity, and particle physics. In this paper, we are interested in hexagonal geometries appearing in rank two

root systems of Lie algebra structures. In particular, we show that such geometries appear in many areas of physics.

This includes strings, M-theory, nanotechnology materials and network systems.

1. Introduction

Geometry is one of the most fundamental concepts
not only in mathematics but in physics as well. On
many occasions, new physics evolved from geom-
etry. The latter has been considered as a natural
instrument not only in higher energy physics and
condensed matter, but also in technological science
including nanoscale physics and network systems.

The connection between physics and geometry
led to a deeper understanding of many physical and
mathematical open problems. Many of these prob-
lems were explored and theories were developed in
the context of quantum filed theories, string the-
ory, quantum gravity, and particle physics.

Hexagonal shape is a nice example of such ge-
ometrical entity. Various interesting applications
of such a geometry have been developed and have
been used in modern physics.

In this work, we are interested in this special ge-
ometry. We show that it appears in many areas of
physics, including the string theory, nanotechnol-
ogy material science and network systems. These
connections are based on hexagonal geometry ap-
pearing in the context of rank two root systems of
Lie algebra structures.

2. Lie Algebras

Before showing the existence of the hexagonal
physics, let us first recall some basic facts on root
system of Lie algebras. Indeed, Lie algebra g is a
vector space together with an antisymmetric bilin-
ear bracket defined on it. This bracket, called the
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Lie bracket, is written as

[, ] : g × g → g (1)

and it satisfies the following relation [a, [b, c]] +
[c, [a, b]] + [b, [c, a]] = 0. This relation is called the
Jacobi identity. It is recalled that g is called sim-
ple if its only ideals are itself and 0. Consider a
semisimple Lie algebra, which is decomposable to a
direct product of simple Lie algebras. A toric sub-
algebra is generated by some semisimple elements
of g. The maximal toric subalgebra H is generated
by all the semisimple elements. It is worth noting
that g may then be written as the direct sum of H
and the subspaces gα

g = H ⊕ {⊕αgα} (2)

Where, {gα = x ∈ g|[h, x] = α(x)x} for x ∈ g.
Here α ranges over all elements of the dual of H.
They are called roots.

According to [1,2,3], a root system ∆ is defined
as a subset of the Euclidean space E satisfying the
following constraints:

1. ∆ is finite and spans E, 0 /∈ ∆

2. If α ∈ ∆, kα ∈ ∆ id k = ±1

3. ∀α ∈ ∆, σv leaves invariant ∆, this means
σα(∆) ⊂ ∆

4. if α and β are inside ∆, the quantity 〈β.α〉 =
2(β.α)
(α.α) ∈ Z.

It has been shown that there is a nice classification
of rank two algebras. Indeed, consider two root
elements α and β of ∆. It is easy to see that

〈β, α〉 〈α, β〉 = 4 cos2 θ
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Where, θ is the angle between α and β. This leads
to the following constraints

0 ≤ 〈β, α〉 〈α, β〉 ≤ 4.

It follows that the possible values of θ are
300, 450, 600, 900, 1200, 1350, 1500, leading to a use-
ful classification. More details on this classification
can be found in [1,2,3].

3. Hexagonal Geometry in String Theory

In this section, we discuss the hexagonal geome-
try within Lie algebras used in string theory and
related models. A particular emphasis will be on
hexagonal root systems corresponding to holonomy
groups used in the compactification down to four
dimensions.

It is recalled that string theory extends to
physics describing the motion of particles (zero di-
mensional objects) to one relating with one (or
higher) dimensional objects [4,5]. It has been con-
sidered as a possible unified theory of strong inter-
action, weak interaction, electromagnetic interac-
tion, and gravitation interaction. In fact, there are
two string configurations:

1. Open string theory described by gauge theo-
ries living on D-branes.

2. Closed string theory controlling gravity the-
ory.

A deeper study reveals that string theory pro-
duces five different models. These models are
defined in ten dimensional spacetime with some
particular Lie symmetries, including E8 × E8 and
SO(32)(D16), considered as gauge groups. It turns
out that, string theory suffers from many problems.
However, such problems can be removed partially
using the following scenarios:

• Compactification

• Introducing new theories.

This includes M-theory in eleven dimensions pro-
posed by Witten (1995) [6] and F-theory in twelve
dimensions proposed by Vafa (1996) [7].

Connecting such models with real world requires
compact manifolds with special Lie symmetries
appearing as holonomy groups [8,9,10]. For in-
stance, in string theory for N = 1 supersymme-
try to be in our usual world, we have to compact
the remaining 10 − 4 = 6 dimensions in a Calabi-
Yau threefold having SU(3) as a holonomy group.

However, working with M-theory we need a seven-
dimensional (7 = 11− 4) with G2 holonomy [11].

These two holonomy groups share nice proper-
ties. In particular, both groups have an amazing
relation connecting the dimension and the rank

Dim g = rank g + 6×m. (3)

They also involve a hexagonal geometry in their
root systems. To see that, let us consider string
theory where the relevant holonomy group is
SU(3). In Lie algebraic language, this symmetry
has the following properties:

• Dimension: dim A2 = 2 + 6× 1

• Two simple roots α1, α2 of equal lengths and
at an of 120◦

|α1| = |α2|, ̂(α1, α2) = 120◦.

• Hexagonal root system:

∆ = {±α1,±α2,±(α1 + α2)} (4)

In the case of M-theory theory, the desired holon-
omy group is fixed to G2. This symmetry has the
following properties:

• Dimension: dim G2 = 14 = 2 + 6× 2

• Two simple roots: α1, α2 of nonequal length,
at 150◦ angle:

|α2|2

|α1|2
= 3, ̂(α1, α2) = 120 + 30◦.

• Two rank root system:

∆ = {±α1,±α2,±(α1 + α2),±(2α1 + α2),

±(3α1 + α2),±(3α1 + 2α2)}

It is easy to show that the root systems of G2 in-
volves two hexagonal geometries. In fact, there
are two hexagons of unequal side length at an-
gle 30◦. The small hexagon is associated with
{±α1,±(α1 + α2),±(2α1 + α2)}, while the roots
{±α2,±(3α1 + α2),±(3α1 + 2α2)} are associated
with the big hexagon.

In what follows, we will see that the above
hexagonal geometries can be explored in many ar-
eas including new technology.
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4. Hexagonal Geometry in Materials

Recently, there has been a nice attempt to make a
contact between high energy physics and graphene
physics using AdS/CFT correspondence in string
theory [12]. Motivated by this work and hexagonal
geometry in string theory compactification, we try
to show that the double hexagonal structure can be
used in materials including graphene and silicene.
It is recalled that hexagonal geometry appears in
many places in condensed matter and it can be con-
sidered as the most stable geometry explored in
the semiconductor electronic applications. Many
efforts have been devoted to study the physics of
materials having such a geometry using different
calculation methods with appropriate approxima-
tions. The most studied models are graphene and
silicene [13,14,15]. More recently, an unexpected
superstructure with hexagonal geometry has been
found in silicene [16]. It is associated with partic-

ular superstructure given by (
√

3×
√

3)R30◦. This
new hexagonal geometry can be associated with
Lie algebra structure of G2 and it can be used to
build to a new hexagonal material. To understand
the connection with G2, one should first establish
the link with the single hexagonal geometry ap-
pearing in A2 Lie algebras discussed in the previ-
ous string theory part. Indeed, as we have seen in
the previous section, this Lie algebra involves two
simple roots of equal length at 120◦ angle. It turns
out that one can make a nice connection between
the root system of Lie algebras of rank two and
materials exhibiting the hexagonal geometry. To
make this contact easy to understand, we consider
a single hexagonal unit cell with (1× 1) structure.
Roughly, the correspondence is presented as fol-
lows:

• Each root A2 is associated with a Si atom
placed on hexagonal unit cell.

• The lattice parameter a is associated with
the length of the roots.

This nice interplay can be completed with the fact
that hexagons can tessellate the full plane forming
the supercell crystal structure of silicene.

It is possible to engineer materials with a dou-
ble hexagonal geometry considered as a possible
extension of the single hexagonal materials associ-
ated with A2 Lie algebras. At this level, one can
imagine that the exceptional Lie G2 could produce
materials with double hexagonal geometry. The
geometry is associated with the root system of G2.
More specifically, to each non zero root we asso-

ciate a single silicon atom. In this new atomic rep-
resentation, the principal hexagonal cell consists
of 12 atoms instead of six appearing in the usual
material. Inspired from the root equation given
in the previous section, the unit cell involves two
hexagons of unequal side length at an angle of 30◦.
Based onG2 Lie algebras, the corresponding lattice
parameters, which will be noted here as a1 and a2,
are associated respectively with the lengths of two
simple roots of G2 Lie algebras. The two lattice
parameters are constrained by

|a2|2

|a1|2
= 3.

required by the G2 Cartan matrix.
As we have seen in the previous model with

single hexagonal geometry, G2 Lie algebra allows
one to build two superstructures given by a(1× 1)

and a(
√

3 ×
√

3) producing materials with double
hexagonal geometries on the same sheet materi-
als [17].

5. Hexagonal Geometry in Network Systems

In network systems, the cellular concept plays an
important role in solving the problem of spectral
congestion and capacity. The cellular concept is
obtained by replacing high cell power transmitter
(large cell) with many small cells. In this configu-
ration, each cell provides coverage to only a small
area. It turns out that the number of cells must
be increased to improve the user capacity. To real-
ize a total coverage, the choice of a structure that
can be overlaid upon a map without leaving gaps
or creating overlapping area is necessary. In net-
work systems, the hexagonal geometry has been
used to model coverage due to its semi-realistic be-
havior [18].

As we have seen before one may use hexagonal
root systems of Lie algebra to bring new hexagonal
geometry in network systems. Roughly speaking,
we will see that the root system can be associated
with radio system in network systems. In fact, a
unit hexagonal cell in telecom systems is associated
with the six nonzero vector roots of A2 Lie alge-
bra. Indeed, each root is associated with a cov-
erage limit. For A2 algebra, all roots have equal
length, which is associated with the coverage ra-
dius. Since the base station is placed at the center
of each hexagonal cell, it should be associated with
the zero roots corresponding to the Cartan subal-
gebra.
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The full picture of network system can be ob-
tained by using the fact that A2 hexagons tessellate
the full plane making a hexagonal cellular shape for
network systems. As we have seen before G2 con-
tains a special hexagonal geometry. In particular,
it involves two hexagons of unequal side length gen-
erated by two simple unequal roots. As in the case
of A2 hexagons, the converge limits should be asso-
ciated with the root system of G2. More precisely,
each unit cell consists of 12 coverage limits instead
of six appearing in single hexagonal geometry.

Roughly speaking, a close inspection shows that
one can propose a nice correspondence between the
rank 2 root systems and cellular network systems.
Roughly, we summarize the mapping in the follow-
ing table:

Rank two Lie algebras Cellular network systems

Root systems Radio systems

Non zero roots coverage limiting

zero roots base stations

Simple roots frequency bands

Simple roots one frequency band

with equal length

Simple roots two frequency bands

with unequal length

In fact, the implementation of the double hexag-
onal geometry in cellular network systems can be
supported by the existence of two frequency bands.
Each frequency band can be associated with a sin-
gle hexagonal structure. In this G2 hexagonal ge-
ometry, the frequency bands can be collocated on
the same area in contrast to the single hexago-
nal geometry where it can appear only as one fre-
quency band without sharing the same base sta-
tion. It is possible that this double hexagonal ge-
ometry can bring novelties in higher density pop-
ulation and missing space room problems leading
to some improvements [19].

6. Discussions

It has been shown that hexagonal geometry ap-
pears in many areas of physics. Inspired by the
hexagonal geometry developed in rank two root
systems of Lie algebra structures, we have shown
the role played by such a geometry in string the-
ory, condensed matter and many other physics. A
special focus has been on A2 and G2 hexagons.

This work comes up with many questions re-
lated to hexagonal geometry. A curious question
is related with the work on string realization of
graphene [12]. It should be interesting to make
contact with such a work based on the fact that
G2 manifolds can be used to get three dimensional
field theories from string theory.
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