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Obliquely Propagating Solitary Waves in a Four-component

Magnetized Dusty Plasma
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Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

A precise theoretical investigation has been made of electrostatic solitary structures in a magnetized dusty plasma,

which consists of non-inertial electron and ion fluids, and inertial negatively as well as positively charged dust fluids.

The reductive perturbation method has been employed to derive the Korteweg de-Vries (K-dV) equation which admits

a SW solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness,

etc.) of such DA solitary structures are significantly modified by positive dust component and obliqueness of external

magnetic field. The effects of obliqueness and external magnetic field on the nature of these compressive and rarefactive

SWs are also discussed. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

1. Introduction

There has been a great deal of interest in under-
standing linear and nonlinear features of the novel
dust-acoustic (DA) waves [1], not only because
they exist in both space and laboratory dusty plas-
mas [2,3], but also because they triggered a number
of remarkable laboratory experiments [4-8]. Rao
et al. [1] have first theoretically predicted the ex-
istence of this novel extremely low phase velocity
(in comparison with the electron and ion thermal
velocities) DA waves, where the dust mass pro-
vides the inertia and the electron and ion thermal
pressures give rise to the restoring force. The pre-
diction of Rao [1] has then conclusively been ver-
ified by a number of laboratory experiments [4-6].
The linear features of these novel DA waves have
also been extensively studied for some other situa-
tions [9-11].

Rao et al., in their seminal work [1], have also
studied small, but finite amplitude DA solitary
waves (SWs). Mamun et al. [12] and Mamun [13]
have then generalized the work of Rao et al. [1]
to study arbitrary amplitude SWs. The nonlinear
DA waves have also been rigorously investigated by
many authors for different dusty plasma situations
theoretically [14-20] as well as experimentally [7,8]
during past two decades. However, all of these
works on nonlinear DA waves [1,12-20] are based on
the most commonly used dusty plasma model that
assumes negatively charged dust. The considera-
tion of negatively charged dust is due to the fact
that in low-temperature laboratory plasmas, col-
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lection of plasma particles (viz. electrons and ions)
is the only important charging process, and the
thermal speeds of electrons far exceeds that of ions.
But, there are some other more important charg-
ing processes by which dust grains become posi-
tively charged [21-24]. The principal mechanisms
by which dust grains become positively charged are
photoemission in the presence of a flux of ultravi-
olet photons [21,22], thermionic emission induced
by the radiative heating [24], secondary emission of
electrons from the surface of the dust grains [23],
etc.

There is direct evidence of the coexistence of
positively and negatively charged dust in dif-
ferent regions of space, viz. Earth’s meso-
sphere [25], cometary tails [26,27], Jupiter’s mag-
netosphere [26,28], etc. Chow et al. [23] have the-
oretically shown that due to the size effect on sec-
ondary emission, insulating dust grains with dif-
ferent sizes can have the opposite polarity, smaller
ones being positive and larger ones being nega-
tive. The opposite situation, i.e., larger (massive)
ones being positive and smaller (lighter) ones be-
ing negative, is also possible by triboelectric charg-
ing [29,30]. The coexistence of positively and neg-
atively charged dust, with larger (massive) dust
being positive and smaller (lighter) dust being neg-
ative [31-33] or vice versa [34], is also observed in
laboratory devices [31-34] where dust of polymer
materials are used. It may be noted here that the
coexistence of same sized dust of opposite polar-
ity may also occur by photoemission if the photoe-
mission yields of the dust-material are very differ-
ent [35].

Recently, motivated by these theoretical pre-
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dictions and satellite/experimental observations, a
number of authors [36,37] have considered a dusty
plasma with dust of opposite polarity, and have
investigated linear [38] and nonlinear [37,39] DA
waves. However, all of these studies [37,39,40] are
limited to unmagnetized situations and the effects
of the external magnetic field have not been con-
sidered in all of the previous works. Therefore, in
our present work, we consider a more general, more
realistic, and consistent magnetized dusty plasma
system (containing non-inertial electron and ion
fluids, and inertial negatively as well as positively
charged dust fluids, and investigate the basic prop-
erties of finite amplitude DA SWs by the reductive
perturbation method [42].

The paper is organized as follows. The ba-
sic equations governing the dusty plasma system
under consideration are given in Sec. 2. The
Korteweg-de Vries (K-dV) equation is derived in
Sec. 3. The numerical analysis is examined in
Sec. 4. A brief discussion is presented in Sec. 5.

2. Governing Equations

We consider a magnetized four-component dusty
plasma system consisting of negatively charged
dust, positively charged dust, Maxwellian electrons
and Maxwellian ions in the presence of an external
static magnetic field B0 = B0ẑ (where ẑ is unit
vector along the z−direction). We assume that
the negative dust grains are much more massive
than the positive ones. This model is relevant to
dusty plasmas in cometary tails [26], upper meso-
sphere [25], and Jupiter’s magnetosphere [26,28],
where dust is charged by the secondary emission
or photoemission or thermionic emission, and the
dust size effect on the latter is important. Thus, at
equilibrium we have Zpnp0+Zini0 = ne0+Znnn0.
The dynamics of the three dimensional DA waves
in such a dusty plasma system is governed by

∂ns
∂t

+∇ · (nsus) = 0, (1)

∂un
∂t

+ (un · ∇)un = ∇ψ − ωcd(un × ẑ), (2)

∂up
∂t

+ (up · ∇)up = −µ∇ψ + µωcd(up × ẑ),

(3)

∇
2ψ = [nn − µpnp − µie

−ψ + µee
σψ] (4)

Where, nn (np) is the negative (positive) dust num-
ber density normalized by its equilibrium value

nn0 (np0), us is the fluid speed of species ‘s’
(nn, np, i, e) normalized by dust-acoustic speed

Cdn = (ZnKBTi/mn)
1/2 with mn being the

negative-dust rest mass and ZnKBTi is the ther-
mal energy, ψ is the electrostatic wave poten-
tial normalized by KBTi/e with e being the mag-
nitude of the charge of an electron. The time
variable is normalized by the ion plasma pe-
riod ω−1

pn = (mn/4πZ
2
nnn0e

2)1/2, the space vari-
able is normalized by the Debye radius λDm =
(ZnKBTi/4πZ

2
nnn0e

2)1/2, σ = Te/Ti, µ =
Zpmn/Znmp, µe = ne0/Znnn0, µi = ni0/Znnn0,
and µp(= Zpnp0/Znnn0) = 1 + µe − µi. Zn
(Zp) is the number of electrons (protons) resid-
ing on a negative (positive) dust and ωcd =
(ZneB0/mn)/ωpn, is the dust cyclotron frequency
normalized to ωpn.

3. Derivation of K-dV Equation

We first investigate the basic features of the small
amplitude electrostatic SWs by the reductive per-
turbation technique, and the stretched coordi-
nates [42,43]:

ξ = ǫ1/2(lxx+ lyy + lzz − Vpt),

τ = ǫ3/2t

Where, ǫ is a smallness parameter (0 < ǫ < 1) mea-
suring the weakness of the dispersion, and Vp (nor-
malized by Cdn) is the phase speed of the pertur-
bation mode; lx, ly, and lz are directional cosines
of wave vector k along x−, y−, and z−axes re-
spectively, so that l2x + l2y + l2z = 1. We can ex-
pand the perturbed quantities ns, usz, and ψ about
their equilibrium values in power of ǫ by follow-
ing Refs. [44] and [42]. To obtain the x- and y-
components of dust electric field and polarization
drifts, we can expand the perturbed quantities ux,y
by following a standard technique [44] where the
terms of ǫ3/2 are included. Thus, we can expand
ns, usx, usy, usz, and ψ as

ns = 1 + ǫn
(1)
s + ǫ2n

(2)
s + ǫ3n

(3)
s · · · ··,

usx = ǫ3/2u
(1)
sx + ǫ2u

(2)
sx + ǫ5/2u

(3)
sx · ··,

usy = ǫ3/2u
(1)
sy + ǫ2u

(2)
sy + ǫ5/2u

(3)
sy · ··,

usz = ǫu
(1)
sz + ǫ2u

(2)
sz + ǫ3u

(3)
sz · · · · · ··,

ψ = ǫψ(1) + ǫ2ψ(2) + ǫ3ψ(3)
· · · · · ··



























(5)

Now, expressing Eqns. (1)-(4) in terms of ξ and τ ,
and substituting Eqn. (5) into the resulting equa-
tions (Eqns. (1)-(4) expressed in terms of ξ and τ),
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one can easily develop different sets of equations in
various powers of ǫ. To the lowest order in ǫ one
obtains

n(1)
e =

ψ(1)

σ
, n

(1)
i = −

ψ(1)

γ
, (6)

n(1)
n = −

l2z
V 2
p

ψ(1), n(1)
p =

µl2z
V 2
p

l2zψ
(1), (7)

u(1)nz = −
lz
Vp
ψ(1), u(1)pz = −

µlz
Vp

ψ(1), (8)

n(1)
n − µpn

(1)
p + µiψ

(1) + µeσψ
(1) = 0 (9)

Using Eqns. (6)-(8) into Eqn. (9), we get the lin-
ear dispersion relation for the DA waves modified
by the presence of the moving dust of opposite po-
larity.

Vp =

√

(1 + µpµ)l2z
(µi + µe/σ)

(10)

The x- and y-components of the electric-field drift
are

u(1)nx = u(1)px = −
ly
ωcd

∂ψ(1)

∂ξ
, (11)

u(1)ny = u(1)py =
lx
ωcd

∂ψ(1)

∂ξ
(12)

Taking the next higher order co-efficient of ǫ, one
obtains

u(2)nx = −
lxVp
ω2
cd

∂2ψ(1)

∂ξ2
, u(2)ny = −

lyVp
ω2
cd

∂2ψ(1)

∂ξ2
,(13)

u(2)px =
lxVp
µω2

cd

∂2ψ(1)

∂ξ2
, u(2)py =

Vp
µω2

cd

∂2ψ(1)

∂ξ2
, (14)

∂2ψ(1)

∂ξ2
= n(2)

n − µpn
(2)
p − µi[

1

2
ψ(1)

2
− ψ(2)] +

µe[σψ(1) +
1

2
σ2ψ(1)

2
] (15)

Again, following the same procedure one can ob-
tain the next higher order continuity equations,

and z-component of momentum equations as

∂n
(1)
s

∂τ
− Vp

∂n
(2)
s

∂ξ
+ lx

∂u
(2)
sx

∂ξ
+ ly

∂u
(2)
sy

∂ξ
+ lz

∂u
(2)
sz

∂ξ
+

lz
∂

∂ξ
[n(1)
s u(1)sz ] = 0, (16)

∂u
(1)
nz

∂τ
− Vp

∂u
(2)
nz

∂ξ
+ lzu

(1)
nz

∂u
(1)
nz

∂ξ
= lz

∂ψ(2)

∂ξ
, (17)

∂u
(1)
pz

∂τ
− Vp

∂u
(2)
pz

∂ξ
+ lzu

(1)
pz

∂u
(1)
pz

∂ξ
= −µlz

∂ψ(2)

∂ξ
(18)

Now, using Eqns. (6)-(18), we can eliminate n
(2)
p ,

n
(2)
n , and ψ(2) and can finally obtain

∂Φ

∂τ
+AΦ

∂Φ

∂ξ
+B

∂3Φ

∂ξ3
= 0 (19)

Where, Φ = ψ(1). This is the K-dV equation with
the coefficients A and B of nonlinear and dispersive
terms, are given by

A = k[
µpµ

2l4z
V 4
p

−
3l4z
V 4
p

+ 2µi −
2µe
σ2

], (20)

B = k[1 + (1− l2z)(
1

ω2
cd

+
1

µ2ω2
cd

)] (21)

Where, k =
V 3

p

2l2
z
(1+µpµ)

.

The general expressions for the coefficients A
and B (by using (20) and (21)) are used to have
some numerical appreciations of our results, viz.
the SW height and width are numerically analyzed.

It is clear from Eqns. (19)-(21) that the soli-
tary potential profile is positive (negative) if A > 0
(A < 0). Therefore, A(µ = µc) = 0, where
µc is the critical value of µ above (below) which
the SWs with a positive (negative) potential ex-
ists gives the value of µc. As µp (positive dust)
increases, we need a higher value of µ, i.e., more
negative dust, in order for rarefactive SWs to exist
(Fig. 1). Apparently the parameter regimes are di-
vided into two regions one for compressive solitons
and other for rarefactive solitons. It may be noted
that from Eqns. (19) and (21) that the coefficient
A of the nonlinearity remains positive for the pos-
itive solitary potential profile and correspondingly
compressive solitons exist in the given plasma sys-
tem. However, introduction of magnetic field leads
to the appearance of compressive and rarefactive
solitons.
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FIG. 1: Variation of µc(critical value of µ) with µp and σ

for µe = 5.

4. Numerical Analysis

The steady-state solution of this K-dV equation
(19) is obtained by transforming the independent
variables to ζ = ξ − U0τ

′ and τ ′ = τ , where U0 is
the speed of the SWs, and imposing the appropri-
ate boundary conditions, viz. Φ → 0, dΦ/dζ → 0,
d2Φ/dζ2 → 0 at ζ → ±∞. Thus, one can express
the stationary solitary wave (SW) solution of the
K-dV Eqn. (19) as

Φ = Φ0sech
2

(

ζ

∆

)

(22)

Where, the amplitude Φ0, and the width ∆ are
given by

Φ0 =
3U0

A
, (23)

∆ =

√

4B

U0
(24)

The general expressions for the coefficients A and
B (by using (20) and (21)) are used to have some
numerical appreciations of our results, viz. the soli-
tary wave height and width are numerically ana-
lyzed.

It is obvious from Eqns. (23) and (24) that as
U0 increases, the amplitude (width) of the SWs in-
creases (decreases). It also has been shown graph-
ically that how the amplitude and the width of
the positive and negative solitary potential pro-
files vary with µp, µ, µe, σ, δ, and ωcd. These
are displayed in Figs. 2-10. From Fig. 2, one
can observe that the magnitude of the amplitude
of the negative solitary profiles increases with µp
and µ. The width of the negative solitary profiles
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FIG. 2: The variation of Φ0 (height of negative SW) with
µp and µ for σ = 5, U0 = 0.4, δ = 10◦ and µe = 10.
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FIG. 3: Showing how Φ0 (height of positive SW) depends
on µp and µ for U0 = 0.4, σ = 5, µe = 10, and δ = 10◦.
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FIG. 4: Showing how Φ0 (height of negative SW) depends
on lz and σ for U0 = 0.4, µp = 0.8, µ = 0.6, and µe = 10.

increases with µp and decreases with µ (as shown
in Fig. 6). One can observe that the magnitude of
the amplitude (width) of the positive solitary pro-
files decreases (increases) with µp and µ (as shown
in Figs. 3 and 7). On the other hand, it is clear
from Figs. 4 and 8 that the magnitude of the am-
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FIG. 5: Showing how Φ0 (height of positive SW) depends
on µe and µp for U0 = 0.4, σ = 5, µ = 2, and δ = 10◦.

0.7
0.75

0.8
0.85

0.9
Μp 0.56

0.58

0.6

0.62

0.64

Μ

0.48
0.49
0.5

D

0.7
0.75

0.8
0.85

0.9
Μp

FIG. 6: The variation of ∆ (thickness of negative SW) with
µp and µ for σ = 5, U0 = 0.4, δ = 10◦ and µe = 10.
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FIG. 7: Showing how ∆ (thickness of positive SW) depends
on µp and µ for U0 = 0.4, σ = 5, µe = 10, and δ = 10◦.

plitude of the negative solitary profiles and their
width increase with both lz and σ. From Fig. 5,
one can observe that the magnitude of the ampli-
tude of the negative solitary profiles decreases with
µe and µP . The width of the negative solitary pro-
files increases with µe and decreases with µP (as
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FIG. 8: Showing how ∆ (thickness of negative SW) de-
pends on lz and σ for U0 = 0.4, µp = 0.8, µ = 0.6, and
µe = 10.
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FIG. 9: Showing how ∆ (thickness of positive SW) depends
on µe and µp for U0 = 0.4, σ = 5, µ = 2, and δ = 10◦.
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FIG. 10: Showing how ∆ (thickness of negative SW) de-
pends on θ and ωcd for U0 = 0.4, σ = 5, µe = 5, µp = 0.8
and µ = 0.4.

shown in Fig. 9). Fig. 10 shows that the width
of the solitary profile increases with δ for the lower
range (i.e., from 0◦ to 45◦), but decreases for its
higher range (i.e., from 45◦ to 90◦).
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5. Discussion

The basic features of the DA SWs in a magnetized
dusty plasma containing warm adiabatic positive
as well as negative dust, adiabatic electrons and
adiabatic ions, are investigated theoretically. By
employing the Reductive perturbation technique,
we have derived K-dV equation. The results, which
have been found from this investigation, can be
summarized as follows.

The width of positive and negative SWs in-
creases with the increase of lz, σ, and µp, but de-
creases with the increase of U0, µ, and µe. The
basic properties (polarity, speed, amplitude and
width) of the DA SWs are found to be significantly
modified by the presence of opposite polarity dust
in presence of external magnetic field. The exis-
tence of the positive and negative solitary potential
structures is due to the presence of the opposite
polarity dust component, which is allowed under
some parametric conditions. It is obvious that the
amplitude of both the compressive and rarefactive
SWs decreases with the rise of lz (lz = cos θ, with θ
the angle between the directions of the wave prop-
agation vector k and the external magnetic field
B0). Fig. 10 shows how the width (∆) of these
SWs changes with the obliqueness (θ) and the mag-
nitude of the external magnetic field (ωcd). It is
observed that the width (∆) increases with θ for
its lower range (i.e., from 0◦ to 45◦), but decreases
for its higher range (i.e., from 45◦ to 90◦). Though
in Fig. 10 the variation of ∆ with θ has been shown
for any value of θ between 0◦ and 90◦, our pertur-
bation method, which is only valid for small but fi-
nite amplitude limit, is not valid for large θ, which
makes the wave amplitude large. It is seen that
the magnitude of the external magnetic field has
no effect on the amplitude of the SWs. However,
it does have an effect on the width of these SWs. It
is shown that, as we increase the magnitude of the
magnetic field, the width of these SWs decreases,
i.e., the external magnetic field makes the solitary
structures more spiky.

We have used a wide range of the dusty plasma
parameters (viz. µ = 0.1 − 5, µe = 0.2 − 10,
µp = 0.2 − 0.9, θ = 0◦ − 90◦, σ = 1 − 15, and
ωcd = 0.1 − 0.9) in our numerical analysis. The
values of the dusty plasma parameters, for which
the existence of the SWs is found, are also within
the ranges of the dusty plasma parameters corre-
sponding to dust-plasma parameters for both space
environments [25-28], and laboratory devices [31-
34].

It may be stressed here that the results of this

investigation should be useful in understanding the
nonlinear features of the localized electrostatic dis-
turbances in mesospheric plasmas, in which posi-
tively and negatively charged dust particles, free
electrons, and ions are the plasma species. The
present investigation may be useful not only in
diagnosing the temporal behavior of polar meso-
spheric summer echoes during active modifica-
tion [45] but also in analyzing the stability of the
mesospheric plasma layer [46] and the formation
and evolution of polar mesospheric clouds [47]. It
is important to mention here that solitary nega-
tive (positive) potential may trap positively (neg-
atively) charged dust particles, which, in turn, at-
tract dust particles of opposite polarities to form
larger sized dust particles or to be coagulated into
extremely large sized neutral dust in cometary
tails [26,27], in upper mesosphere [25,46-48], in
Jupiter’s magnetosphere [26,28] or even in labora-
tory experiments. Thus, the results of the present
investigation should help to identify the origin of
charge separation as well as dust coagulation in
mesospheric plasma containing positive and nega-
tive dust particles [25,45,47]. It may be added here
that, in our present work, we have neglected the ef-
fects of strong correlation among charged dust [3]
and dust neutral collisions [49,50] etc.

To conclude, it may be added that the time evo-
lution and stability analysis of these solitary struc-
tures are also problems of great importance but
beyond the scope of the present work.
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