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We present a new model to explain the behavior of transmitted quantum particles, by analogy with a wireless

communication system. The particle’s complex wavefunction is interpreted as the amplitude and phase of a modulated

carrier wave. Particle transmission events are modeled as the outcome of a process of signal accumulation that occurs

in an extra (non-spacetime) dimension. The standard probability density interpretation of the squared amplitude of

the wavefunction is a derivable consequence of the model. The so-called “collapse of the wave packet” also has a

simple interpretation within the model’s framework. We simulate the model for a 2-slit diffraction experiment, and

indicate possible deviations of the model’s predictions from conventional quantum mechanics.

1. Introduction

The behavior of nonrelativistic quantum parti-
cles is conventionally described by the Schrödinger
wave equation [1]

−~2

2m
∇2ψ(~x, t) + V (~x, t)ψ = −i~ ∂

∂t
ψ(~x, t) (1)

Where, ~ is the Planck’s constant, m is the parti-
cle’s mass, ~x, t denote spatial position and time, re-
spectively, V (~x, t) is a potential function that may
depend on space and time, and ψ(~x, t) is the wave-
function for the quantum particle. The wavefunc-
tion ψ is strikingly different from classical waves
(such as electromagnetic waves) in at least two re-
spects. First, ψ is fundamentally complex. (It is
true that electromagnetic wave equations in some
situations can also be expressed in complex for-
mat, but these are mathematical re-expressions
of the fundamental real equations.) Second, the
field magnitude ψ(~x, t) has no direct physical in-
terpretation. Rather, according to the empirical
Born rule, the squared field magnitude equation
|ψ(~x, t)|2 gives the probability density for discrete
particle detection events

Since the beginning of quantum mechanics,
physicists have struggled to understand the physi-
cal mechanism that gives rise to these two proper-
ties. However, in wireless digital communications
one does encounter systems that exhibit both char-
acteristics. This paper shows how quantum pro-
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perties could be due to an underlying structure
similar to a conventional wireless communication
system.

The paper is organized as follows. In Sec. 2 we
describe a communication system that possesses
“quantum” characteristics. In Sec. 3 we modify
this system to produce a model of quantum parti-
cle detection. In Sec. 3 we discuss physical conse-
quences of the model and in Sec. 6 we summarize
our conclusions.

2. Wireless System Model

Consider a mobile receiver moving randomly
within a region in which a modulated carrier wave
is broadcast, as shown in Fig. 1. The carrier wave
is modulated both in amplitude and phase. In or-
der to detect the broadcasted signal, the receiver
accumulates its received signal until a detection
threshold is reached. In our model, the wireless
signal has the following characteristics:

• The carrier frequency is ω, so that the
signal has the general mathematical form
A(~x, t) cos(ωt + φ(~x, t)) and is convention-
ally represented by its “complex amplitude”
A(~x, t)eiφ(~x,t).

• The transmitted signal (at the transmitter)
has constant complex amplitude over time in-
tervals of length δ, where δ >> 2π/ω (δ is the
“chip width” [2]). The probability distribu-
tion of complex amplitudes is Gaussian, so
that real and imaginary parts are indepen-
dent, identically distributed (i.i.d) standard
normal random variables with mean 0 and
variance 1.
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• The ratio of field amplitude to transmitted
signal amplitude (denoted by ψ(~x)) depends
on the field location ~x, but is independent
of time (corresponding to a static propaga-
tion environment). For mathematical sim-
plicity, we assume that we may partition the
region into K subregions of equal area such
that ψ(~x) is constant on each region (see Fig.
1). That is, ψ(~x) = ψk for all x in region
k, k = 1, . . .K. By taking finer and finer par-
titions, we may recover the continuum limit.

FIG. 1: Wireless system model.

The receiver has the following characteristics:

• The receiver consists of an oscillating circuit
with natural frequency ω, which is driven by
the signal field at the receiver’s current loca-
tion.

• The receiver’s location is denoted by ~r(t),
and the receiver moves slowly enough so that
ψ(~r(t)) can be considered to be constant over
time intervals of length Mδ, where M is an
integer >> 1.

• The receiver moves in such a way that its
position uniformly samples the entire region
of interest (for instance, by random walk).

• Our mathematical proof (see Appendix A)
requires that the receiver’s fields over the
time intervals (m1,m1+1)Mδ and (m2,m2+
1)Mδ are statistically independent whenever
m1 6= m2. Strictly speaking, a receiver mov-
ing under random walk will not satisfy this
condition. Instead, the receiver would have
to make uniformly-distributed random jumps
at times Mδ, 2Mδ, . . . A rigorous treatment
with random-walk motion would require a
more careful analysis.

• The receiver detects the signal when the re-
ceiver’s amplitude exceeds a fixed threshold
Θ′, where Θ′ >> δ

2ωMmax|ψ|.

Let the random variable ~r ∗ represent the position
of the receiver at the instant of detection. In Ap-
pendix A we prove that under the above assump-
tions we obtain the following probability distribu-
tion:

Pr [~r ∗ ∈ Region k] ∝ |ψk|2, k = 1, . . . ,K (2)

which is a discretized version of the Born rule.
That is, the probability density for detection at a
given location is proportional to the squared mag-
nitude of the wavefunction at that location.

3. Single Quantum Detection Event Model

In this section, we modify the previous model to
obtain a model for quantum single-particle trans-
mission. The model is discretized for simplicity,
but it is straightforward to see how the model can
be taken to a continuous limit.

We emphasize that the probability distribution
in the previous model arose from the outcome of a
process that involves sampling the entire region of
potential detection before the actual detection was
made. This representative sampling was necessary
in order for the field strengths to translate into rel-
ative probabilities. We want similar characteristics
for the quantum process.

In the wireless scenario presented above the pro-
cess variable was time. This was appropriate be-
cause we were only concerned about the spatial po-
sition of the receiver at the moment of detection.
However, in quantum mechanics, we are concerned
about the location of detection events within space-
time. It is impossible to have a process that unfolds
in time, that also samples all space-time locations
before determining the detection location. For this
reason, it is necessary to introduce a new process
variable so that the process of signal accumulation
takes place in a non-observable dimension, which
we will call the a-dimension.

We also postulate a carrier wave that oscillates
as a function of a (not as a function of time) having
the mathematical form sinωa. The frequency ω is
unknown, and does not correspond to any measur-
able quantity in space-time. The signal has the
following characteristics:

• The signal has constant complex amplitude
over a-intervals of length δ, where δ >>
2π/ω. The distribution of complex ampli-
tudes is mean-zero Gaussian, with i.i.d. stan-
dard normal real and imaginary parts.

• The signal is multiplied by a complex field
amplitude ψ(~r, t), which is independent of a.
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For mathematical simplicity, we assume that
the amplitude takes one from a finite set of
complex values {ψ1, . . . ψK} and that within
the space-time confines of the detector. The
sets {~r, t|ψ(~r, t) = ψk} (k = 1, . . .K) all have
equal 4-volume.

We suppose that the detection environment of
the particle is fixed. In this basic model, the de-
tection environment consists of a set of detection
locations, which are space-time points where a par-
ticle detection could possibly occur. In the context
of a scattering experiment, the detection locations
might correspond to atoms in a detection screen.

The previous scenario had a physical receiver
which moved within the state space of possible de-
tection locations. Quantum detection (say of a
particle on a screen) does not appear to have any
corresponding receiver. We therefore introduce the
conceptual notion of a detectron, which plays the
same role as the receiver in our previous model.
Signal accumulation takes place as the detectron
moves around and uniformly samples the set of all
potential detection locations. This motion takes
place in the a-dimension; for fixed a, the detec-
tron’s space-time location is fixed. In this respect
the detectron should not be considered as a mov-
ing material particle, but rather as a kind of place-
holder for possible detection sites.

The detectron has the following characteristics:

• Associated with the detectron is an oscillator
(which varies sinusoidally with a) with natu-
ral frequency ω, which is driven by the signal
field at the detectron’s current space-time lo-
cation.

• The detectron moves in space-time (as a
function of a) slowly enough so that its field
amplitude does not change significantly over
a-intervals of length Mδ, where M is an in-
teger >> 1.

• The detectron moves in such a way that it
uniformly samples the space-time extent of
the detector.

• A particle detection occurs when the detec-
tron’s oscillator’s amplitude exceeds a fixed
threshold Θ′ >> δ

2ωMmax|ψ|.

We can apply this model to the two-slit diffraction
experiment shown in Fig. 2. The detectron’s lo-
cation (as a function of a) uniformly samples the
space-time locations corresponding to the detec-
tion screen. The complex field amplitude ψ(~r, t)

FIG. 2: Notation for quantum two-slit experiment.

corresponds to the conventional Schrödinger wave-
function at the screen, which in the ray approxi-
mation is given by

ψ(0, L, z, t) ∝ d−1
1 ei(k

′d1−ω′t)+d−1
2 ei(k

′d2−ω′t) (3)

Where, k′, ω′ are the (observable) wave number
and frequency, and d1 = (L2

1 + h2)1/2 + (L2
2 + (z−

h)2)1/2, d2 = (L2
1 + h2)1/2 + (L2

2 + (z + h)2)1/2.
We simulated this system using MATLAB, with
the physical lengths h = 5, L1 = 104, L2 = 106,
and zmax = 106 (all measured in observable wave-
lengths). We considered a single time slice t = 0,
and restricted to the x = 0 portion of the screen.
The z locations were discretized into 100 bins, and
the detectron jumped uniformly randomly from bin
to bin every M = 400 iteration steps. At iteration
n, the signal was incremented by νn · ψ(0, L, z, 0),
where the {νn} are i.i.d. complex random variables
with standard normal real and imaginary parts.
Each time the detection threshold Θ = 500 was
reached, a detection was logged and the simula-
tion was restarted. Altogether 100,000 detections
were logged. Fig. 3 shows the detection probabil-
ity distribution obtained in the simulation. The
agreement is very close with the theoretical result
|ψ(z)|2, with ψ given by (3).

FIG. 3: Simulation and theory for double-slit experiment.
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4. Physical Implications of the Model

Our model suggests that the usual formula for a
quantum wavefunction is a statistical approxima-
tion, and small deviations from the probabilities
predicted by the wave equation should be expected.
In particular, detection rates near theoretical wave-
function nulls should be higher than the conven-
tional quantum predictions because of random fluc-
tuations in the accumulation process. This effect
was indeed observed in the simulation (see Fig. 3).
The simulation also showed that distribution peaks
are slightly lower than theoretical values. Unfortu-
nately we cannot make specific numerical predic-
tions for the magnitude of these effects, because
they depend on aspects of the process that cannot
be measured directly (this is analogous to the his-
torical situation with Boltzmann’s constant, which
was first determined indirectly by Perrin [3] via
the equilibrium distribution of particles in colloidal
suspension).

In our model, the wave function is seen as an
“actual” field, and not merely a representation of
the observer’s partial knowledge. On the other
hand, the field is not directly observable via phys-
ical events in space-time. The apparent “collapse”
of the wave packet [1] is due to the fact that the ob-
servable universe is a single “a-slice” of the entire
process.

Quantum mechanics is well-known for exhibit-
ing nonlocal phenomena: in other words, differ-
ent quantum events may be correlated even though
they are separated in space and time in such a way
that (relativistically speaking) no information can
pass between them. The EPR effect and Bell’s in-
equality are prominent examples of quantum non-
locality [1]. This paradoxical behavior is consis-
tent with our model, because the process of ac-
cumulation is nonlocal: the detectron samples all
potential detection locations during the process of
determining the actual detection location.

Admittedly our model is incomplete because it
does not explain the formation of the signal, nor
the existence of the detectron. Also, it is restricted
to single-particle detection in a fixed environment.
We shall address these limitations in our future
research.

5. Comparison With Other Interpretations of
Quantum Mechanics

Several physicists have proposed alternative inter-
pretations of quantum mechanics. In this sec-
tion we briefly compare our interpretation with the
most prominent of these other interpretations.

Everett’s “Many-worlds” interpretation [4] re-
quires that space-times multiply exponentially as
a function of time, and “all possible” universes
exist in parallel. Our model, which embeds our
space-time universe within one additional dimen-
sion, possesses a vastly smaller and simpler state
space.

Bohm’s quantum mechanics [5] posits that parti-
cles such as electrons are able to track along with
pilot waves. This appears to imply that these par-
ticles have some sort of inner structure. In our
model particles are not “objects” at all, so no such
complications appear.

Cramer’s transactional quantum mechanics [6] in-
terprets ψ∗ as a wave traveling backwards in time,
but gives no explanation why ψψ∗ should be inter-
preted as a probability. Furthermore, transactional
quantum mechanics is not very clear about the or-
der in which “transactions” are determined. In
our model, all transactions are determined “simul-
taneously” (at a = aΘ), and a single accumulation
process is used to determine all interaction events.

We also remark that none of these alternative
models explains why the wavefunction is complex,
nor why the squared amplitude is interpreted as a
probability.

6. Conclusions

This model would represent a radically different
picture of quantum particle transmission. The
wavefunction is given a physical interpretation in
terms of a signal field; and the usual quantum me-
chanical probability density derived from the wave-
function is the natural result of a thresholding pro-
cess involving this field. There is no traveling par-
ticle at all, only a process of accumulation that cul-
minates in a detection event. This process is not
“causal’ in the usual sense that we commonly pre-
sume that the present is determined by the past.
Rather, present events are the outcome of a process
that samples all times past and future. The ap-
pearance of temporal causality in everyday physics
is due to correlation and not causation.

The model predicts that detection probabilities
near the nulls of interference patterns should be
higher than those predicted by conventional quan-
tum mechanics, and that interference peak prob-
abilities should be lowered. However, so far we
cannot predict the size of these effects.
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APPENDIX A: Derivation of Fundamental
Result

With the assumptions presented in Sec. 2, the
field at space position ~x at time t can be expressed
(with the aid of complex amplitudes) as follows:

A(~x, t) = Re[ψ(~x) · νdt/δe · eiωt] (A1)

Where, ψ(~x) is the ratio of field amplitude at ~x to
signal amplitude at the transmitter; νdt/δe ≡ νn =
αn + iβn, where αn, βn are i.i.d. standard normal
random variables; and dye denotes the “ceiling”
function.

We now suppose that the trajectory of the re-
ceiver is given by the function ~r(t). It follows that
the equation for the amplitude x(t) of the driven
oscillator is

x′′ + ω2x = A(~r(t), t) (A2)

This equation may be expressed as the real part of
the complex equation

z′′ + ω2z = ψ(~r(t)) · νdt/δe · eiωt (A3)

The solution of (A3) which satisfies z(0) = z′(0) =
0 is

z(t) =
−i
2ω

∫ t

0

ψ(~r(u)) · νdu/δedu · eiωt

+
i

2ω

∫ t

0

ψ(~r(u)) · νdu/δe · e2iωudu · e−iωt

(A4)

According to our assumptions, the factor e2iωu in
the second integrand oscillates rapidly compared
to the rest of the integrand, which causes the sec-
ond integral to be negligible compared to the first.
Also, the model assumptions imply that ψ(~r(u))
can be treated as constant over time intervals
of length Mδ. Using the notation Ψdu/(Mδ)e ≡
ψ(~r(u)), we then have:

z(t) ≈ −iδ
2ω

dt/δe∑
n=1

Ψdn/Me · νn · eiωt (A5)

The oscillation at time Nδ has complex amplitude
(−iδ/2ω) · S(N), where

S(N) ≡
N∑
n=1

Ψdn/Me · νn (A6)

According to the assumptions of this model, each
Ψj is one of the values {ψ1, . . . ψK}. Define

Θ ≡ 2ω

δ
Θ′ (A7)

NΘ ≡ min
N
{N | |S(N)| ≥ Θ} (A8)

κ(m) ≡ {k|Ψm = ψk} (A9)

Our goal is to evaluate the probability distribution
of κ(. . .) corresponding to the first passing of the
threshold Θ:

Pr [κ (dNΘ/Me) = k] k = 1, . . . ,K (A10)

In order to investigate the dependence of
Pr [κ (dNΘ/Me) = k] on ψk, for each fixed m′ > 0
we will investigate the event

Em′,k ≡ [(m′ = dNΘ/Me) ∧ (κ(m′) = k)] (A11)

(here and elsewhere “∧” denotes logical “and”)
conditioned on fixed sequences of (m′ − 1) initial

ψ′s, corresponding to the Km′−1 events

Fm′({k′1, . . . k′m′−1})
≡ {κ(m) = k′m, 1 ≤ m < m′, },

1 ≤ k′m ≤ K (A12)

The key step in the proof shall be proving that

Pr[Em′,k|F ′m({k′1 . . . k′m′−1})]
≈ C(m′, {k′1′ . . . k′m′−1})|ψk|2 (A13)

Where, C(. . .) is independent of k. The events
{F ′m({k′1, . . . k′m′−1})} for fixed m′ partition the
sample space and Pr[Fm′({k′1, . . . k′m′−1})] =

K1−m′
. Furthermore, the events {Em′,k}m′=1,2,...

partition the event {[κ (dNΘ/Me) = k]}, so from
(A13) we obtain

Pr [κ (dNΘ/Me) = k]
∑
m′

∑
k′1...k

′
m′

Pr[Em′,k|Fm′({k′1 . . . k′m′−1})]

Pr[Fm′({k′1 . . . k′m′−1})] (A14)

≈ |ψk|2
∑
m′

∑
k′1...k

′
m′

C(m′, k′1 . . . k
′
m′−1) ·K1−m′

(A15)

which is proportional to |ψk|2 as claimed.
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We prove (A13) as follows. We shall re-express
the event Em′,k as

Em′,k =
⋃

0≤r≤1

[NΘ ≤ m′M ∧ κ(m′) = k]

∧ [(S((m′ − 1)M) = rΘ) ∧ (dNΘ/Me > m′ − 1)]

(A16)

so that

Pr[Em′,k|Fm′({k′1 . . . k′m′−1})]

=

∫ r=1

r=0

Pr [(NΘ ≤ m′M) | (κ(m′) = k)

∧(S((m′ − 1)M) = rΘ)] · Pr [κ(m′) = k)]

·dP [(S((m′ − 1)M) = rΘ)

∧ (dNΘ/Me > m′ − 1) | Fm′({k′1 . . . k′m′−1})
]

= K−1

∫ r=1

r=0

(1− Pr [(NΘ > m′M) | (κ(m′) = k)

∧(S((m′ − 1)M) = rΘ)])

·dP [(S((m′ − 1)M) = rΘ)

∧(dNΘ/Me > m′ − 1) | Fm′({k′1 . . . k′m′−1})
]

(A17)

We first evaluate the dP [· · · ] term in (A17) as
follows. Conditioned on event F ′m({k′1, . . . k′m′−1}),
we have

S(N) =

N∑
n=1

(ψk′dn/Me
· νn), (N ≤ m′M) (A18)

Where, the {νn} have i.i.d. standard normal
real and imaginary parts (we write this as νn ∼
N(0, 1) + iN(0, 1)). It follows that S(N) is a ran-
dom walk in the complex plane with independent
(but not identically distributed) steps. We also
have

E[|S(N)|2] = 2

N∑
n=1

∣∣∣ψk′dn/Me

∣∣∣2 (A19)

Where, E[. . .] denotes expected value. Since we
have assumed that Θ >> maxk |ψk|, it follows
that Θ is much greater than any individual term
in S(N), and the distribution of {Θ−1S(N)} for
all sample paths S can be approximated in prob-
ability by a standard Brownian motion B(τ) [7],

where the time variable τ is given by

τ(N) ≡ E
[
|Θ−1S(N)|2

]
≈ 2Θ−2

N∑
n=1

∣∣∣ψk′dn/Me

∣∣∣2
(A20)

The sample paths included in the event dNΘ/Me ≥
m′ correspond to Brownian motion paths for which
|B(t)| < 1 for all t ≤ τ((m′ − 1)M). Restricted to
these paths, the distribution of B(τ((m′ − 1)M))
corresponds to the position probability density for
a standard Brownian motion with absorbing bar-
rier at |z| = 1. Let β(z, T ) be the probability
density at time T of a Brownian motion with ab-
sorbing barrier at |z| = 1. Then β(z, T ) is the
solution to the diffusion equation with boundary
conditions β(z, T ) = 0 for |z| = 1 and initial
conditions β(z, 0) = δ(z), where δ(. . . ) is the
Dirac delta function [7]. The solution may be ex-
pressed as a series expansion in the Bessel func-
tions {J0(αnr)}n=1,2,...) with time-dependent co-
efficients. The solution is radial (so we may write
β(z, T ) as β(r, T )) and satisfies βr(1, T ) < 0 for
all T > 0. (These properties can be mathemati-
cally proven, but are also intuitive consequences of
the physical interpretation of β(r, T ) as an evolv-
ing temperature distribution within a disk where
the boundary is held at zero temperature.) It fol-
lows that β(r, T ) can be approximated near the
boundary |z| = 1 as

β(r, T ) = (1− r)|βr(1, T )|+O[(1− r)2] (A21)

and our identification of {S(N)/Θ} with B(τ(N))
gives

dP [(|S((m′ − 1)M)| = rΘ) ∧ (dNΘ/Me > m′ − 1)]

≈ (A(1− r) +O(1− r)2)dr (A22)

Where, A is independent of r.
We next evaluate the integrand in (A17). Let

ζ ≡ arg[S((m′ − 1)M)], and rotate in the complex
plane by an angle −ζ to obtain
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Pr [(NΘ > m′M) | (κ(m′) = k) ∧ (S((m′ − 1)M) = rΘ)]

= Pr [|S(N)| < Θ ∀N ∈ {(m′ − 1)M + 1 . . .m′M}
| (κ(m′) = k) ∧ (|S((m′ − 1)M)| = rΘ)]

= Pr

∣∣∣∣∣∣S((m′ − 1)M) + ψk

N∑
n=(m′−1)M+1

νn

∣∣∣∣∣∣
< Θ ∀N ∈ {(m′ − 1)M + 1 . . .m′M}

| (|S((m′ − 1)M)| = rΘ)
]

= Pr

∣∣∣∣∣∣rΘ + ψke
−iζ

N∑
n=(m′−1)M+1

νn

∣∣∣∣∣∣
< Θ ∀N ∈ {(m′ − 1)M + 1 . . .m′M}

]
= Pr

[∣∣∣∣∣ Θ

|ψk|
− x+

N∑
n=1

µn

∣∣∣∣∣ < Θ

|ψk|
∀N ∈ {1 . . .M}

]
(A23)

where

x ≡ (1− r)Θ/|ψk| (A24)

µn ≡ ei(arg(ψk)−ζ)νn+(m′−1)M . (A25)

Note that µn ∼ N(0, 1)+iN(0, 1), so that Reµn ∼
N(0, 1). In the limit as |ψk|/Θ→ 0 (for fixed M),
we have (see Fig. 4)

FIG. 4: Illustration of limit in (A26): Θ/|ψk| >> 1.

lim
|ψk|/Θ→0

Pr

[∣∣∣∣∣ Θ

|ψk|
− x+

N∑
n=1

µn

∣∣∣∣∣
<

Θ

|ψk|
∀N ∈ {1 . . .M}

]
= Pr

[
N∑
n=1

Re(µn) < x ∀N ∈ {1 . . .M}

]
(A26)

Where, µn ≡ Re[ei(argψk−ζ)νn+(m′−1)M ] and µn ∼
N(0, 1). By the monotone convergence theorem
for integrals, for sufficiently large Θ/|ψk| we may
replace the integrand in ( Eqn. (A17)) with one
minus the right-hand side of (Eqn. (A26)) to any
given accuracy. Recalling the definition of x in
(Eqn. (A24)), we have then from Eqn. A17 and
Eqns. (A22) - (A26) that

Pr[Em′,k|F ′m({k′1, . . . k′m′−1})]

≈ K−1

∫ ∞
0

(
1− Pr

[
N∑
n=1

Re(µn)

< x ∀N ∈ {1 . . .M}
])

·A
(
|ψk|
Θ

)2

· dx (A27)

which is proportional to |ψk|2, thus completing the
proof.
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