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A Study of Bianchi Type IX Spacetime
via Time Dependent Quasi-Maxwell Formalism
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The exact solutions of the Einstein field equations for the Bianchi type IX metric are obtained via time dependent

quasi-Maxwell2 equations when the matter is a perfect fluid.

1. Introduction

The slicing and threading methods were respec-
tively introduced by Misner, Thorne and Wheeler
in 1973 [1] and by Landau and Lifshitz in 1975
[2]. Both methods can be traced back to Landau
and Lifshitz [3] in 1941 when they introduced the
threading method of splitting the spacetime met-
ric, and in the stationary case the connection, to
yield the spatial gravitational force. After them,
Lichnerowicz [4] introduced the beginnings of slic-
ing point of view. Also, Møller [5] discussed the
spatial gravitational force for a general spacetime.
In 1956, Zel’manov [6] discussed the splitting of
Einstein field equations in general case. For more
details about these formalisms, see reference [7].

It is well known that the Bianchi type cosmolog-
ical models in presence of perfect fluid play a vital
role in general relativity to discuss the early stages
of evolution of universe. Also, the Bianchi models
can be coupled to any gravitational theory. The
Bianchi type IX spacetime is important because
FRW with positive curvature, de Sitter and Taub-
NUT spacetimes etc. correspond to this space-
time. In this paper, we are going to discuss the
TQM equations in threading decomposition for-
malism for the Bianchi type IX spacetime.

2. TQM Equations

A stationary spacetime3 (M, gµν) is a 4-dim
Lorentzian manifold with a timelike Killing vector

1 yavarimorteza@yahoo.com
2 Henceforth abbreviated as TQM.
3 Greek indices run from 0 to 3 and Latin indices from 1 to

3.

field ηµ. We consider the observers in this space-

time having the velocity components λµ = ηµ

η in

ηµ direction, where η =
√

gµνη
µην . In projection

formalism [2,8], the metric is decomposed as

ds2 = (λµdx
µ)2 + (gµν − λµλν)dxµdxν (1)

If we choose {ηµ} = (1, 0, 0, 0) and {λµ} =
( 1√

h
, 0, 0, 0), where h is a function of xµ, then the

metric takes the following form [2,8,9]:

ds2 = h(dt− gidx
i)2 − γijdxidxj (2)

Where, γij = −gij +hgigj in which gi = −g0i
h

and

h = g00. It is interesting to rewrite the Einsteins
field equations in terms of gravitoelectromagnetism
fields4 in γ-space5 with time dependent metric γij .
Therefore, the field equations can be written as the
TQM equations6 [6,12]:

∗∇ · ∗E = ∗E2 +
1

2
∗B2 −

∗∂D

∂t
− d− 1

2
(ζ + U) (3)

∗∇× ∗B = 2(∗S + ∗M− jm) (4)

4 See reference [10] for a discussion of this point.
5 The quotient space obtained by quotienting spacetime by

the action of stationary isometry and it represents the
collection of orbits of Killing vectors ηµ, [11].

6 The symbols () and [ ] represent the commutation and
anticommutation over indices, gravitational units with
c=G=1 are used and the 3-dim Levi-Civita tensor εijk
is antisymmetric under interchange of any pair of in-
dices such that ε123 = ε123 = 1, [2]. Also, we note that
∗E2

g = γij ∗Egi
∗Egj .
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∗Kij = −∗∇(i
∗Ej) + ∗Ei

∗Ej

+
1

2
(∗Bi

∗Bj − γij∗B2)

+ 2DikDk
j −DDij +

√
γ εnk(iD

n
j)
∗Bk

−
∗∂Dij

∂t
+ Uij +

1

2
γij(ζ −U) (5)

Where, ζ =
T00

h
is density of the moving matter,

jim =
Ti0√
h

is the momentum density, Uij = Tij is

3-dim kinematic stress tensors and U = Ui
i, while

Tµν are energy-momentum tensors. Also,
∗∂

∂t
=

1√
h

∂

∂t
, γ = det(γij) and d = DijD

ij such that

Dij =
1

2

∗∂γij
∂t

, Dij = −1

2

∗∂γij

∂t
,

D = γijDij =
∗∂ ln

√
γ

∂t
(6)

and time dependent gravitoelectromagnetism fields
are defined in terms of gravoelectric potential φ =
ln
√
h and gravomagnetic vector potential g =

(g1, g2, g3) as follows7

∗E = −∗∇φ− ∂g

∂t
; ∗Ei = −φ∗i −

∂gi
∂t

(7)

∗B√
h

= ∗∇× g ;
∗Bi√
h

=
εijk

2
√
γ

g[k∗j] (8)

In Eqn. (5), ∗Kij is 3-dim starry Ricci tensor con-
structed from 3-dim starry Christoffel symbols as
∗Kij = ∗λkij∗k−∗λkik∗j +∗λnij

∗λkkn−∗λnik∗λknj where

∗λijk =
1

2
γil(γjl∗k+γkl∗j−γjk∗l) and also the starry

covariant derivatives of an arbitrary 3-vector and
a tensor are given by ∗∇jAi = Ai∗j − ∗λkijAk,
∗∇jAi = Ai

∗j + ∗λijkAk and ∗∇kTij = Tij∗k +
∗λinkTjn+∗λjnkTin. Finally, the vectors ∗S = ∗E ×
∗B and M have components as ∗Si =

εijk
√
γ
∗Ej
∗Bk

and ∗Mi = −∗∇jDij+∗∂iD in which ∗∂i = γik ∗∂k.

7 Note that the divergence and curl of an arbitrary vector

in γ-space are defined by ∗∇ · A =
1
√
γ

(
√
γAi)∗i and

(∗∇×A)i =
εijk

2
√
γ

A[k∗j] while ∗i = ∗∂i = ∂i + gi
∂

∂t
.

2.1. Exact solution of the Bianchi type IX
metric via TQM equations

We consider the Bianchi type IX metric [13] as

ds2 = dt2 − a2(dx2 + dy2 + dz2 − 2 cos ydxdz) (9)

Where, a is a function of t. Firstly, it is easy
to check that the all components of gravitoelec-
tromagnetism fields are zero and also the nonzero
starry Christoffel symbols are

∗λ112 = ∗λ323 =
1

2
cot y,

∗λ123 = ∗λ312 =
1

2
csc y, (10)

∗λ213 = −1

2
sin y

Now, applying these symbols, we determine the 3-
dimensional starry Ricci tensor as

∗Kij =
1

2


1 i = j = 1, 2, 3,

− cos y i 6= j = 1, 3,
0 otherwise

(11)

In the next step, we assume that the matter con-
tent is a perfect fluid, i.e.,

Tµν = (ρ+ p)uµuν − pgµν (12)

Where, ρ, p and uµ are, respectively, the mat-
ter density, pressure and 4-velocity vector of the
matter distribution with co-moving coordinates as
uα = (1, 0, 0, 0). Before continuing, we will need to
use the following relations8

∗M = 0 (13)

U = 3p (14)

UijD
ij = Dp (15)

d =
1

3
D2 = 3(

ȧ

a
)2 (16)

With the help of expression (13), it can be shown
that the Eqn. (4) is trivial. Next, with substitu-
tion of Eqns. (11), (12), (14) and (16) into Eqns.
(3) and (5), respectively,we obtained the following
equalities, respectively

ρ+ 3p+ 6
ä

a
= 0 (17)

−ρ+ p+ 2
ä

a
+ 4(

ȧ

a
)2 +

1

a2
= 0 (18)

8 Here, dot stand for partial differentiation with respect to
t.
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Where, physical quantities ρ and p depend on t
and y. At this stage, we need the equations of the
energy law [6] as follows

∗∇ · jm +
∗∂ζ

∂t
+ Dζ + UijD

ij − 2jkm
∗Ek = 0

(19)
∗∂ jm
∂t

+ Djm − ζ∗E− jm × ∗B + Π = 0

(20)

here Πi = ∗∇kUik − ∗EkUik. In continuation, we
can calculate this term as follows9

Πi =

{
p′

a2
i = 2,

0 i 6= 2.
(21)

With the help of this expression, Eqn. (20)
changed to

p′ = 0 (22)

which is equivalent to p = p(t). Furthermore, with
using Eqns. (15) and (16), Eqn. (19) will trans-
form into

ρ̇+ (ρ+ p)D = 0 (23)

To solve the above equation, we assume that ρ to
be separable form as follows

ρ = f1(t) + f2(y) (24)

Now, from Eqns. (22)-(24), becomes

f2(y) = 0 (25)

it is clear that ρ = ρ(t). Finally, with applying
Eqns. (16)-(18), we can conclude Eqn. (23) is
trivial.

3. Physical Models and Solutions

We now assume that the pressure and matter den-
sity of fluid are related through the gamma-law
equation of state

p = (γ − 1)ρ (26)

Where, γ is the adiabatic parameter and has been
taken in the interval 1 ≤ γ ≤ 2. Below, we will

9 The over head prime indicate partial differentiation with
respect to y.

discuss the three physical models corresponding

to the γ = 1,
4

3
, 2.

Case 1. Dust distribution model (i.e., γ = 1)

In this case, from Eqns. (17) and (18), we
find that

8aä+ 4(ȧ)2 + 1 = 0 (27)

The solution of this equation is

2
√
`a− a2 − ` arctan( 2a−`

2
√
`a−a2 ) = ±(t+ t0)

(28)

Where, ` and t0 are constant. In this case, we
can not express term a(t) explicity in terms of t
and consequently the physical parameters can not
be determined in terms of t. Hence, no physical
conclusion can be drawn from this solution.

Case 2. Radiating model (i.e., γ = 4
3 )

In this case, from Eqns. (17) and (18), we
have

4aä+ 4(ȧ)2 + 1 = 0 (29)

It can be shown that the exact solution of this
equation is of the form

a = ±1

2

√
8(c1 − c2t)− t2 (30)

Where, c1 and c2 are constants with conditions

c1, c2 < 0 & |c2| >
√
−c1

2
(31)

So, the physical quantities take the following form

ρ = 3p =
q

a4
(32)

here q = 3(c22 +
c1
2

) is a constant.

Case 3. Zeldovich fluid model (i.e., γ = 2)

In this case, from Eqns. (17) and (18), we
have

2aä+ 4(ȧ)2 + 1 = 0 (33)

and it’s solution is given by10

EllipticE(
a

c
, I)− EllipticF(

a

c
, I) = ± t+ t′0

2c
(34)

10 For more details about Elliptic integrals, see references
[14] and [15].
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Where, c and t′0 are constants. Therefore, we can-
not obtain term a(t) explicity in terms of t and
so the physical parameters cannot be calculated in
terms of t.
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