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Relativistic and Non-relativistic Solutions of the I nver sely
Quadratic Yukawa Potential

C. A. Onate
Theoretical Physics Section, Department of Physics, University of llorin, Ilorin, Nigeria

Using the concept of supersymmetric quantum meckanie find the relativistic and non-relativistiolwtions for the
inversely quadratic Yukawa potential. We first fittte Hamiltonian of the corresponding Schridingguation and then
using shape invariance approach we obtain the betatd solutions for both Klein-Gordon and Schrgdmequations and
their corresponding eigen-functions. We obtaineal gblutions of these equations for angular momenite#n® by using

Pekeris approximation to overcome the orbital dergal barrier.

1. Introduction

Supersymmetry is a mathematical symmetry that
relates elementary particles of one spin to other
particles which differ by half a unit of spin andea
known as super-partners. The concept was first
proposed in the context of hadronic physics by
Hironari Miyazawa in 1966 whose work was
ignored at that time [1-4]. In a theory with
unbroken supersymmetry, for every type of boson,
there exists a corresponding type of fermion with

the same mass and internal quantum numbers and

vice versa. However, there is no direct evidence fo
the existence of supersymmetry [5]. It is motivated
by possible solutions to several theoretical
problems since the super-partner of the Standard
Model particles have not been observed. The

supersymmetric partners which appear with masses
much greater than 1 TeV are considered the most

interesting by particle theorists.

In the application, supersymmetry offers an
extension to more familiar symmetries of quantum
field theory. The mathematical structure of
supersymmetry has subsequently been applied
successfully to other areas of physics by Wess,
Zumino and Abdus Salam. It remains a vital part of
many proposed theories of physics.

There is an increase in the study of both Klein-
Gordon and Dirac equations due to the physical
importance of their exact solutions, especially of
the relativistic equations for the study of systems
under certain potentials such as Rosen-Morse,
Coulomb, Pdschl-Teller, non-spherical harmonic
oscillator, exponential-type potentials [6-13], and
others. In these equations, several authoratequ
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the scalar potential to vector potential and olgdin
the bound state solution forz O for certain typical
potentials [14-16].

In this work, we attempt to study approximate
solutions of Schrédinger and Klein-Gordon
equations with an inversely quadratic Yukawa
potential given by [17]

Vo -

V(r)=-—2e" €N
r

Where, a is the screening parameter a¥igl is the

depth of the potential. To obtain the solution of

above mentioned two equations for angular
momentum #0, we apply a  suitable
approximation type given by [18]
1_  4a? —oar
T Da ¢ (2)
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2. TheKlein-Gordon Equation with Scalar
and Vector Potentials

The Klein-Gordon equation is written as

1(1+12)

Srtmestof (v - ) =o
)

A critical investigation by Alhaidari et al. [16],
shows thaB =%V .

Since S=1V, the equation describes a scalar
particle (spin-0 particle). This is the Schrodinger
equation for the potential 2V in the non-relatiigst
limit. A conclusion was drawn by Alhaidari et al.
that the only choice iS=+V, which results into a
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nontrivial non-relativistic limit with potential
function 2V and not V [19]. Thus in the relativisti
limit, the interaction potential becomes V instead
of 2V and then we write our Klein-Gordon
equation as

d? 1 2
[F—[En,. —EV(r)j

2
o(m+3sm) —'('+1’]Rn.(r)=o @
2 r2 '

3. Bound State Solution of the Klein-Gordon
Equation

The Klein-Gordon equation with scalar potential
S(r) and vector potentiaV(r) [20,21] is given by

d 2U nl (I’)

T (E* =M? =V(r)(E,y +M)

Dy =0 (5)
r

With Egns. (1) and (2), Eqn. (5) becomes

d? ~
%(r):ﬁ/eﬁ - EnI}JnI (r) (6)

Where we have made the following substitutions

Ver = 1B—1i_‘222 ' L E;1:_22: § e
B, = -4&V,a?(Ey +M) (7b)
B, =4a®(1(1 +1) - 2V,) (7c)

E, =E2 -M?2 (7d)

Writing the ground-state wave functiod, (r)
[22,23] as

Uy (1) =exe- [ wtryer ®)
Where, ¢(r) is the supersymmetric super-

potential. Substituting Eqn. (8) into Egn. (6), we
have a second order differential equation in the
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form of Riccati equation, which is satisfied by the
super-potentiaty(r) ,

d _
- -y, g, ©)
r
Where
w(r)=p+ o™ (10)
1_ e—2m

Here,E, represents  the
pandC are two constants.

The wave function related to the ground state is
now obtained from the solution of the Riccati
equation (Eqn. (9)) as

ground-state energy,

__%+B. (11)
o= 7 ) s
And
d=-a+.a*+B, (12)

By using the super-potential function of Eqn. (16),
the partner potentials of the inversely quadratic
Yukawa potential for supersymmetry quantum
mechanics are then given as

2,069_20" N &—Zar (&—Zzzr + 20,)

— 2 ' A2
U+(I’)—¢I +¢/ =p°t 1_e—2m (l_e_2m)2

6e—2ar (6+ 20,) + 62e—2ar (e—Zar _1) . Zpae—Zar _[62 + 82 )2
(1_ e_2m )2 1_ e—2m 26

(13)

zpée—Zar N &—ZGr (&—Zzlr _ 20,)
l_ e—2m (1_ e_Zm, )2

U (r)=¢*-w=p"+

e 2ar (6— 20,) + Fexr (e—Zar _1) . 2p6e—2m _[62 + 82 )2 |

(1_ e_2m )2 1- e—2m 2
(14)
From Eqgns. (13) and (14), we write
R(a,) =U, (r.a,)-U_(r,a,) (15)

From Eqgn. (15), the shape invariance condition is
satisfied and the shape invariance holds via
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mapping of the form [24-29] - C —2a. Now,
consider our Eqn. (11), it is easy to write

E, = —(62 +6BI]2 (16)
n, 2 ’
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Where, a, =d—-an, which on substitution gives
the energy equation as

2

2
(n+;+;\/(1+2|)2 ~ o (Ey +M)j +Vo(Eny +M)

=0

EZ-M?%+qa?

n+ 2 2@ 2)2 - A (Ey +M)

Now, let us obtain the non-relativistic limit by

17

transformations, the non-relativistic limit on Eqn.

making a transformation as follows: (17) is obtain as
Ey +M=22 and E, -M =E,,. With these

r -2

n+lsl @+2)* - SWO ZWO
En ==, = (18)
n+-+= [@+2)%- ’W 0
2 2

Now, we can obtain the corresponding un- 1
norm.alized wave functions via the _standard Where, gz( HE ]2 and
function analysis method. Let us now define a new 2a°h?®
variable of the formy=e™™ and substituting it
into Eqn. (6) results to the following second order 1+((1+ 21)% - ,uvojz
differential equation n= Now, let

2 2
PR\IRJABFY o0 (9
dy ydy | y*@-y)
Where
/‘Enl /Enl
= -0 +1),

2a2h hla? (£+D

_ 2Ny | HEy

n? h2an2 (20)

Now, from our transformation, we can write

Ry (V) =y*L-y)"Fy(y) (21)

2

a’h?
second-order homogeneous
equation of the form

1
:(;ﬂ)z Egn. (19) then reduces to a

linear differential

oy + F.(y){(2<‘+1)— y(26+/7+1)}

yd-y)
(26 +1)? +( f;';”é

yd-y)

I +1)j
-F(y)

=0 (22)

And consequently, the total radial wave function is
obtained as
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RnI (y) = 0 ; ; ; i ——
-a i
N € E@-y)  2F (-0 n+2(E+) + 2 +1Y) |
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_ 4. Some Expectation Valuesfor Inversely
Fig.1: E,) vs Vg for pu=n=1=1a=015. Quadratic Yukawa Potential
We calculate some expectation values of this
0 —"_ potential using Hellmann-Feynman theorem [30-
o2l . | 33]. If the HamiltonianH for a particular quantum
oal i | system is a function of the paraméfgr then
osl \ | taking the energy eigen-values &g, (V,) and the
osl N eigen-functions asU, (V,) of the Hamiltonian,
ol SO we can easily write from the HFT
1.2 \‘\ “‘\ b
""" W 0Ey (Vo) 0H (Vo)
24l ] = =2 S 3 nl\Y0/ _ 0
H ne3 3 =Un; Vo) VAR Vo) (24)
16l n=4 Ky VO VO
————— n=5
18 ‘ ‘ ‘ ‘ ‘ ‘ ‘
LA Where the effective Hamiltonian is given by
Fig.2: E,; vsaforVy =1, g=h=1andl = 0. H _h2 d? +h2 I(I+1)_V0e"2"” (25)
2udr? 2u r? r2
0 PP i R ‘ .
T - Then, we obtain
-0.5¢ /;:" I/I \\ \\::\ 4
e / \\ \\\\
‘) 7 \ \ E -2ar
N 'Il \\‘ ‘\\: tn1 = <_ e - > (26)
/ 5 Vo r
1 \
-15F ! \ B
s / \ ,
oLl \ | 5. Conclusion
/ \
N L=1 \ We have obtained the energy eigenvalue equation
25 ! \
X N L=2 g . . . .
i Lo3 for Klein-Gordon equation and its non-relativistic
al ! t;‘ limit (Schrédinger equation) using SUSY QM
! i formalism and methodology for angular
35 - - = = = i momentum | #0 using a SU|'tabIe apprOX|matlonl
v(Qy) scheme. We have also obtained the corresponding

eigen-function as well as the expectation value.

Fig.3: EngVs Vigy ()for n=Vy =i=p=1.
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