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Bianchi Type-III Viscous Fluid Models in Bimetric Theory of Gravitation
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Spatially homogeneous and anisotropic Bianchi type-III cosmological models are obtained in Rosen’s bimetric the-
ory of gravitation [1] when the source of gravitational field is governed by viscous fluid. Various physical and geo-
metrical properties of the models are discussed.

1. Introduction

In an attempt to modify the Einstein’s general
theory of relativity, Rosen [1] proposed a new
theory of gravitation known as bimetric theory of
gravitation. This theory satisfies covariance and
equivalence principles. In this theory, two met-
ric tensors are defined at each point of the space-
time: Riemannian metric tensor gij and back-
ground flat space-time metric tensor γij. The ten-
sor gij describes the geometry of curved space-
time and also the gravitational field (i.e., inter-
action between matter and gravitation) whereas
the tensor γij refers to inertial forces (i.e., whose
curvature tensor vanishes). Accordingly, at each
point of the space-time, one has two line elements

ds2 = gijdxidxj (1)

and

dσ2 = γijdxidxj (2)

Since the theory has some noteworthy charac-
teristics, it has excited the interest of many au-
thors to study this theory. The authors who have
studied this theory from various angles are Yil-
maz [2], Israelit [3,4], Reddy and Venkateswarlu
[5], Mohanty and Sahoo [6,7], Reddy et al. [8,9],
Sahoo [10-12], and Sahoo and Mishra [13,14]. It is
evident from the literature that this theory needs
more investigations so as to upheaval the hidden
secrets of the theory.

In theoretical cosmology, the Bianchi type cos-
mologies play an important role. A Bianchi (type)
cosmology represents a spatially homogeneous
universe as this space-time admits a three param-
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eter group of isometries whose orbits are space
like hyper-surfaces. These models can be used
to analyze the aspects of the physical universe,
which pertain to or may be affected by anisotropy
in the rate of expansion.

In most cosmological models, the matter in
the universe is considered as perfect fluids. But
one should expect that viscosity concept may
also have an important role in cosmology, par-
ticularly in cases where turbulence effects occur.
The bulk viscosity in a fluid allows an easy ex-
change of energy between translational and in-
ternal degrees of freedom as in the case of a gas
of rough spheres. The viscosity mechanism in
cosmology can account for high entropy of the
present universe (Weinberg, [15,16]). Bulk vis-
cosity associated with grand unified theory may
lead to an inflationary cosmology and introduc-
tion of bulk viscosity can avoid the big-bang sin-
gularity.Thus we consider bulk-viscosity distribu-
tion to have realistic cosmological models (Gron
[17]). The solutions found in the model by Mur-
phy [18] exhibit an interesting feature that the
big-bang singularity appears in the infinite past.
Bali and Upadhaya [19] have discussed Bianchi
type-III string cosmological models with bulk vis-
cosity, where the constant coefficient of bulk vis-
cosity is considered. Wang [20-23] have discussed
LRS Bianchi type-I and Bianchi type-III model for
a cloud string with bulk viscosity and Yadav et
al. [24] have studied some Bianchi type-I viscous
string cosmological model for cloud of string
with bulk viscosity. Rao and Sireesha [25,26] have
discussed the Bianchi type-II, VIII and IX string
cosmological models with bulk viscosity in vari-
ous scalar tensor theories of gravitation.

Reddy and Venkateswara Rao [27] have shown
the non existence of spatially homogeneous,
anisotropic Bianchi type III, V and VI0 cosmolog-
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ical models in bimetric theory when the source of
the gravitational field is a perfect fluid. However,
they have found vacuum models in bimetric the-
ory. Mohanty and Sahoo [6] have considered the
anisotropic spatially homogeneous Bianchi type
III and VI0 metrics in bimetric theory of gravita-
tion with source of gravitation meson field and
mesonic perfect fluid and have found vacuum
models. Rao et al. [28] have constructed Bianchi
type-I string cosmological model with bulk vis-
cosity in bimetric theory of gravitation.

To our knowledge, none of the authors have
studied this theory for Bianchi type-III space-time
when the source of the gravitational field is gov-
erned by viscous fluid. Thus in the present paper,
we have taken an attempt to discuss the effect of
bulk viscosity in Bianchi type-III space-time.

2. Field Equations

The field equations in bimetric theory of gravita-
tion proposed by Rosen [1] are

Ni
j −

1
2

Nδi
j = −8πκTi

j (3)

where

Ni
j =

1
2

γab(ghighj|a)|b

and

N = Ni
i

Here a vertical bar (|) denotes the covariant
differentiation with respect to γij and Ti

j is the
usual stress tensor of the matter fields.

We consider the Bianchi type-III metric in the
form

ds2 = −dt2 + e2αdx2 + e2(β+x)dy2 + e2δdz2 (4)

with the convention x1 = x, x2 = y, x3 = z, x4 = t
and α, β and δ are functions of time t only.

The flat space-time corresponding to the metric
(4) is

dσ2 = −dt2 + dx2 + exdy2 + dz2 (5)

3. Viscous Fluid

In this section, we are interested in constructing
viscous fluid models. The energy momentum

tensor for viscous fluid distribution is given by

Ti
j = (ρ + p)uiuj + pgij (6)

together with

uiui = −1 and p = p− ηui
;j (7)

Where, ui is the four velocity vector of the fluid,
p is the proper pressure, ρ is the energy density, p
is the effective pressure and η is the bulk viscous
coefficient of the fluid.

Since the bulk viscous pressure represents only
a small correction to the thermodynamical pres-
sure, it is reasonable assumption that the inclu-
sion of viscous term in the energy momentum
tensor does not change fundamentally the dy-
namics of the cosmic evolution. For the specifi-
cation of η, we assume that the fluid obeys an
equation of state of the form

p = ζρ (8)

Where, 0 ≤ ζ ≤ 1.
Using co-moving co-ordinate system, the field

equations (3) for the metrics (Eqns. (4) and (5))
corresponding to the energy momentum tensorin
Eqn. (6) can be written as

α44 − β44 − δ44 = 16πκp (9)

α44 − β44 + δ44 = −16πκp (10)

α44 + β44 − δ44 = −16πκp (11)

α44 + β44 + δ44 = 16πκρ (12)

Here and afterwards the suffix 4 after a field vari-
able represents ordinary differentiation with re-
spect to time t only. From the field equations (9)-
(11), we obtain

α44 = β44 = δ44 = −16πκp (13)

Using the values from Eqn. (13) in Eqn. (12), we
get

3p + ρ = 0 (14)

Corresponding to the metric in Eqn. (4), we get
from Eqn. (7)

p = p− η[α4 + β4 + δ4] (15)
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Using Eqn. (15) in Eqn. (14), we obtain

3[p− η(α4 + β4 + δ4)] + ρ = 0 (16)

For reality conditions of p and ρ, we must have
p > 0 and ρ > 0. Thus Eqn. (16) satisfies the
following cases.

Case I:
When

p− η(α4 + β4 + δ4) = 0 (17)

and

ρ = 0 (18)

Using Eqn. (17) in Eqn. (15), we get

p = 0 (19)

Again usingEqn. (18) in Eqn. (8), we obtain

p = 0 (20)

Now, using Eqn. (19) in Eqn. (13), we get

α44 = β44 = δ44 = 0 (21)

On integration, Eqn. (21) yields

α = β = δ = a1t + a2 (22)

Where, a1 and a2 are constants of integration.
Now putting the above values in Eqn. (15), we
get

η = 0 (23)

Thus the metric in Eqn. (4) corresponding to Eqn.
(22) takes the form

ds2 = −dt2 + ea1t+a2 [dx2 + e2xdy2 + dz2] (24)

After using the transformation of coordinates
a1t + a2 = T, x = X, y = Y and z = Z, the metric
(24) can be written as

ds2 = −dT2 + e2T [dX2 + e2XdY2 + dZ2] (25)

The vacuum model of Eqn. (25) is spatially
homogeneous and isotropic. The model has
no singularity at T = 0. It is interesting to
note that this model is similar to the vacuum
model obtained by Reddy and Venkateswarlu
[27]. (Hence the work done in this paper may be
considered as an extension of the work by Reddy

and Venkateswarlu [27].)

Case II: When ρ 6= 0
Taking ζ = 1, Eqn. (8) reduces to

p = ρ(Sti f f f luid) (26)

Use of Eqn. (13) (without loss of generality the
constant of integration is considered as zero) and
(26) in Eqn. (16), we get

ρ =
9ηα4

4
(27)

Also by using Eqn. (13) in Eqn. (12), we obtain

ρ =
3α44

16πκ
(28)

Comparing Eqns. (27) and (28), we find

12πκη =
α44

α4
(29)

Integrating Eqn. (29), we get

ln(α4) = 12πκ
∫

ηdt + b1 (30)

Where, b1 is the constant of integration.
To avoid complexity of the problem and with-

out loss of generality, we take b1 = 0.
Thus, Eqn. (30) can be expressed as

α4 = e12πκ
∫

ηdt = e f (t), (say) (31)

Where, f (t) = 12πκ
∫

ηdt.
Again integrating Eqn. (31), we obtain

α =
∫

e f (t)dt + b2 (32)

Where, b2 is the constant of integration.
To avoid complexity and without loss of gen-

erality, we take b2 = 0.
Thus Eqn. (32) with the help of Eqn. (13) can

be expressed as

α = β = δ =
∫

e f (t)dt (33)

Applying (31) in (28) and (29), we get

p = ρ =
3

16πκ
e f (t). f ′(t) (34)
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and

η =
1

12πκ
f ′(t) (35)

The use of Eqn. (34) and Eqn. (14) yields

p = − 1
16πκ

e f (t). f ′(t) (36)

Hence in view of Eqn. (33) the metric in Eqn. (4)
takes the form

ds2 = −dt2 + e2
∫

e f (t)dt[dx2 + e2xdy2 + dz2] (37)

Since the field equations are highly non-linear
and undetermined, we consider following partic-
ular cases to get solutions.

Subcase I: Let f (t) = t
Thus, from Eqns. (33) to (36), we obtain

α = β = δ = et,
p = ρ = 3

16πκ et,
η = 1

12πκ

and

p = − 1
16πκ et

In this case, Eqn. (37) reduces to stiff fluid filled
universe model and the equation is given by

ds2 = −dt2 + e2et
[dx2 + e2xdy2 + dz2] (38)

Subcase II: Let f (t) = lnt
As in Subcase-I, we get

α = β = δ = t2

2 ,
p = ρ = 3

16πκ ,
η = 1

12πκ
1
t

and

p = − 1
16πκ

In this case, Eqn. (37) reduces to static universe
model and the equation is described by

ds2 = −dt2 + et2
[dx2 + e2xdy2 + dz2] (39)

Similarly, one can find the model for ρ = 3p by
taking ζ = 1

3 in Eqn. (8).

4. Conclusion

We have considered the Bianchi type-III metric in
bimetric theory when the source of gravitational
field is viscous fluid. It is found that Bianchi type-
III cosmological model does not exist, hence sin-
gularity free vacuum model is constructed. How-
ever, the stiff fluid model and the static models of
the universe are found as special cases.
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